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Abstract

Service composition is highly desirable in peer-to-peer
(P2P) systems where application services are naturally
dispersed on distributed peers. However, it is challenging to
provide high quality and failure resilient service composi-
tion in P2P systems due to the decentralization requirement
and dynamic peer arrivals/departures. In this paper, we
present an integrated P2P service composition framework
called SpiderNet to address the challenges. At service setup
phase, SpiderNet performs a novel bounded composition
probing protocol to provide scalable quality-aware and
resource-efficient service composition in a fully distributed
fashion. Moreover, SpiderNet supports directed acyclic
graph composition topologies and explores exchangeable
composition orders for enhanced service quality. During
service runtime, SpiderNet provides proactive failure recov-
ery to overcome dynamic changes (e.g., peer departures)
in P2P systems. The proactive failure recovery scheme
maintains a small number of dynamically selected backup
compositions to achieve quick failure recovery for soft
realtime streaming applications. We have implemented
a prototype of SpiderNet and conducted extensive exper-
iments using both large-scale simulations and wide-area
network testbed. Experimental results show the feasibility
and efficiency of the SpiderNet service composition solution
for P2P systems.

1 Introduction

Peer-to-peer (P2P) systems are special Grid systems
where Grid nodes called peers can communicate directly
among themselves via application-level connections. Dif-
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Figure 1. Peer-to-peer service overlay.

ferent from the conventional distributed systems, P2P sys-
tems are often fully decentralized and self-organizing. Re-
cently, P2P systems have drawn much research attention
with the popularity of various P2P file sharing systems
such as Gnutella [1]. In this paper, we propose aservice-
oriented P2P system calledP2P service overlaywhere
peers can provide not only media files but also a number of
application service components such as media transcoding
and data filtering as well as application-level data routing,
which is illustrated by Figure 1. The goal of such a P2P
service overlay is to enable efficientservice1 sharing that
is beyond the file sharing offered by current P2P systems
[1]. Different from the conventional Grid systems [6, 14],
each peer exports directly application service components
for service sharing, which encompasses resource and data
sharing. The advantage of such a service-oriented Grid
system is to avoid both security problem in dynamic code
uploading and expensive code/data migration across wide-
area networks.

P2P service overlays are attractive since they promotes
Internet-scale service sharing without any administration
cost or centralized infrastructure support. New services can
be flexibly composed from available service components

1In this paper, service refers to application service that is a self-
contained application unit.



based on the user’s function and quality-of-service (QoS)
requirements. Thus, P2P service overlays can achieve better
scalability, manageability, and configurability in application
service provisioning than the conventional client-server sys-
tem model. Service composition across wide-area networks
also becomes necessary in the P2P service overlay since
service components are naturally distributed on different
peers. Application examples of such P2P service overlays
include: (1)pervasive content distribution, where the user
can request adaptive content distribution to heterogeneous
receivers with on-demand transformations and value-added
customization; and (2)collaborative scientific computa-
tion [5], where geographically distributed research labs
can leverage each other’s solutions such as data analysis
tools to conduct complex scientific experiments with lower
development and computation cost.

Although previous research projects (e.g., [15, 19, 3,
18, 5]) have addressed the problems of service/resource
selection and composition, they present the following major
limitations when applied to P2P systems. First, most sys-
tems adopt a centralized approach that assumes the global
system states information. However, the above assumption
becomes impractical for a large-scale P2P system that often
consists of thousands of peers dispersed across the wide-
area network. Moreover, extended wide-area network delay
and dynamic peer arrivals/departures can exacerbate the
problem since it requires frequent information updates and
thus large system overhead in order to alleviate states infor-
mation imprecision. Second, most previous work does not
consider the dynamic node changes that are common in P2P
systems. Third, most existing solutions only support linear
service composition with fixed composition order, which
greatly limits the applicability and efficiency of service
composition. We have presented the preliminary design
of the P2P service composition framework in [10], which
partially addressed the first two problems.

In this paper, we present an integrated P2P service
composition framework called SpiderNet to address all
of the above problems within a unified framework. For
scalability, SpiderNet executes a novelbounded composi-
tion probing(BCP) protocol to provide fully decentralized
QoS-aware service composition. In contrast to centralized
schemes (e.g., [18, 12]), BCP performs on-demand selec-
tive states collection using a limited number of composition
probes. The key observation behind our approach is that
because of the service function constraints, QoS-aware
service composition only needs the QoS and resource states
information about those peers that can provide required
service functions. These function-qualified peers often
form a small sub-graph of the whole P2P network. Thus,
it is more efficient to perform on-demand selective states
collection than blindly maintain global states at each peer
using expensive periodical states update. Compared to

the conventional network probing, BCP has controllable
overhead and considers service-specific requirements such
as service function constraints and inter-service depen-
dency/commutation relations.

Furthermore, SpiderNet provides efficient failure recov-
ery to maintain the quality of composed services throughout
the whole service session. SpiderNet adopts proactive
failure recovery scheme to achievefast failure recovery
for soft realtime streaming applications. The proactive
failure recovery approach maintains asmall number of
backup compositions for each active service session. The
backup compositions are adaptively selected based on the
conditions of the current composition and the user’s QoS
requirements. Thus, we can avoid the delay and overhead
of triggering BCP to find a new composition if one of the
maintained backup compositions can recover the failure.

We demonstrate the feasibility and efficiency of the
SpiderNet service composition framework using prototype
implementation. We conduct extensive experiments by
evaluating the prototype on both large-scale simulation
testbed and wide-area network testbed PlanetLab [2]. The
experimental results show that SpiderNet can achieve near-
optimal QoS-aware service composition performance with
low overhead. Compared to the centralized approach that
requires global states maintenance, SpiderNet can reduce
the system overhead by more than one order of magnitude.
Moreover, SpiderNet can achieve failure resilient service
composition in a dynamic P2P network by maintaining a
few number (e.g., less than 3) of backup compositions for
each session.

The rest of the paper is organized as follows. Section 2
presents the system model. Section 3 briefly describes the
decentralized service discovery scheme. Section 4 presents
the initial decentralized QoS-aware service composition
used by the service session setup phase. Section 5 describes
the proactive failure recovery for maintaining the quality
of composed services during service sessions. Section
6 presents the experimental results. Section 7 briefly
discusses related work. Finally, the paper concludes in
Section 8.

2 System Model

In this section, we first describe the SpiderNet sys-
tem model. The SpiderNet system is implemented as
a distributed middleware infrastructure deployed in wide-
area networks, which can automatically map the user’s
composite service request into an instantiated distributed
application service in the P2P service overlay.



P2P overlay


network


Function graph
 F

1


F

3


F

2


F

4


V

6


V

2


V

4


V

3
 V


5

V


1


V

11


V

10


S

1
 S


2


S

4


S

3


S

5


S

6


S

9


S

10


S

7


S

8


S

13


S

14


S

15


S

16


S

17


S

18


Service function
F

Dependency


relation

S
 Service component


Service graph


S

7


S

1
 S


9
 S

13


Figure 2. Service composition system archi-
tecture.

2.1 Composite Service Request

The composite service request consists of two parts:
(1) function graph, shown by the top layer in Figure 2;
and (2) quality-of-service (QoS) requirementsQreq =
[qreq

1 , ..., qreq
m ], where qi is a quality parameter such as

delay and data loss rate2. The function graph consists of
required service functionsF1, ..., Fk that are connected by
dependency links and commutation links. The dependency
link indicates that the output of one function is used as the
input by its successor. The commutation link means that
the composition order of two functions can be exchanged.
For example, in Figure 4, functionF3 (e.g., color filter)
can be exchanged withF4 (e.g., image scaling). The user
can specify the function graph using the visual specification
environment such as QoSTalk [13, 23].

2.2 Distributed Application Service

The service component (si) is a self-contained applica-
tion unit providing certain functionality, illustrated by Fig-
ure 3. Each service component includes one or more input
queues for buffering input application data unit (ADU) from
the network. Whenever the queue is not empty, the service
component takes an input ADU from each input queue, pro-
cesses them (e.g., audio mixing), and then sends the output
ADU(s) to the network. Each service component accepts
inputs with a quality levelQin and generates outputs with a
quality levelQout, both of which are vectors of application-
level quality parameters such as resolution and data format.

2For simplicity, we assume that all QoS metrics are additive since
a multiplicative metric (e.g., loss rate) can be transformed into additive
parameters using logarithmic function. Note that bandwidth is considered
as resource metric that will be described later.
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Figure 3. Service component model.

In order to process inputs and generate outputs, a specific
amount of resourcesR is required, which is a vector of
required resources (e.g., cpu, memory). Moreover, each
service component is associated with a performance quality
Qp which is the same vector of performance parameters
(e.g., delay) as the user’s QoS requirementsQreq.

Service components can be composed into a service
graph (λ) illustrated by the middle tier in Figure 2, which
collectively deliver advanced composite services to the end-
user. The link in the service graph is called service link that
can be mapped to an overlay network path consisting of a
set of overlay links. A service graph can be decomposed
into multiple branch paths. For example, in Figure 2, the
service graph consists of two branch pathss1 → s9 → s13

ands1 → s7 → s13.

2.3 Peer-to-Peer Service Overlay

We describe the P2P service overlay, illustrated by the
bottom tier in Figure 2, using a directed graphG = (V, E),
whereV represents the set of N peersvi, 1 ≤ i ≤ N , and
E represents the set ofM overlay linksej , 1 ≤ j ≤ M .
Each peer provides a few number of service components.
The overlay network topology can be either maintained as
a topologically-aware overlay mesh [20] or dynamically
constructed based on each peer’s benefit [10]. However,
our service composition system design is orthogonal to the
underlying overlay topology.

2.4 Problem Description

We formulate the quality-aware service composition
(QSC) problem in P2P service overlay as a two dimensional
graph mapping problem, which is illustrated by Figure
4. In one dimension, we can derive different composition
patterns from the original function graph by considering the
commutation links. In the other dimension, we can map
each service function into different functionally duplicated
service components because of the inherent redundancy
property of P2P systems [10]. These duplicated service
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Figure 4. Two dimensional graph mapping
problem.

components provide the same functionality but can have
different QoS properties (e.g., service time) and available
resources on the local peer host (e.g., CPU, memory). For
example, in Figure 4, functionF1 can be mapped to two
duplicated service componentss1 and s2. Thus, we can
derive different service graphs from the function graph by
considering the above two dimensions. The QSC problem
is to find the best mapping from the function graph to the
best qualified service graph that satisfies the user’s multi-
constrained QoS requirementsQreq and achieves best load
balancing in the current P2P service overlay. However,
the QSC problem is NP-hard since it subsumes the multi-
constrained path finding problem that has been proven to
be NP-hard [8]. Thus, our goal is to provide efficient, fully
decentralized service composition solution that is suitable
for P2P computing environment.

3 Decentralized Service Discovery

This section briefly describes our decentralized service
discovery substrate that allows each peer to locate services
in the P2P service overlay without assuming a centralized
service directory. We implement the decentralized service
discovery based on the Pastry distributed hash table (DHT)
system [22]. The basic function of the DHT system is
to map a data key to a responsible peer. We realize the
keyword-based service discovery by adding one meta-data
layer on top of the DHT system. Due to the space limitation,
we only briefly describe the decentralized service discovery
as follows:

Service registration. When a peer wants to share a
service component, it registers the service component by
storing the component’s static meta-data (e.g., location,
input QoS, output QoS) into the DHT system. The peer
first generates a key by applying a secure hash function on

the function name of the service component. It then stores
the meta-data into the DHT using the key. Because all
functionally duplicated service component share the same
function name and thus the key, the DHT system will store
the meta-data list of the duplicated service components on
the same DHT assigned peer.

Service discovery. When a peer wants to discover the
list of service components matching certain function name,
it can generate a key by applying the same secure hash
function on the function name. Then, it can generate a
query message using the key which will be routed to the
assigned peer by the DHT system. The peer then returns
the meta-data list of the duplicated service components to
the requesting peer.

4 Initial Service Composition

In this section, we present the probing-based decentral-
ized service composition solution used at the service session
setup phase. We first introduce the bounded composition
probing protocol. Then we describe the per-hop probe
processing algorithm, followed by the optimal composition
selection algorithm.

4.1 Bounded Composition Probing Protocol

Given a service composition request, the application
sender3 invokes the BCP protocol, which is illustrated by
Figure 5. The BCP protocol includes four major steps:

Step 1. Initialize the probe. The source first generates
a composition probing message, called probe, which is
illustrated by Figure 5 (a). The probe carries the in-
formation of function graph and the user’s QoS/resource
requirements. To control the probing overhead, the probe
carries aprobing budget(β) that defines how many probes
we could use for a composition request. The probing budget
represents the trade-off between the probing overhead and
composition optimality. Larger probing budget allows us
to examine more candidate service graphs, which allows us
to find a better qualified service graph. Thus, our solution
can provide an adaptive composition solution with tunable
performance by properly adjusting the probing budget. For
example, we can use larger probing budget for the request
with (1) higher priority, (2) stricter QoS constraints, or (3)
more complex function. We can also adaptively adjust the
probing budget based on the user feedbacks and historical
information.

To achieve efficient composition probing, we associate a
probing quota(αi) with each functionFi in the function
graph, which defines the number of duplicated service
components to probe forFi. The probing quota allows

3For simplicity, we use a unicast streaming application as an example.
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Figure 5. Bounded composition probing protocol.

us to achieve differentiated allocation of the probes among
different functions. For example, we can assign higher
probing quota for the function with more duplicated service
components.

Step 2. Distributed probe processing. Each peer
processes a probe independently using only local informa-
tion until the probe arrives at the destination, illustrated by
Figure 5 (b). The goal of hop-by-hop distributed probe
processing is to collect needed information and perform
intelligent parallel searching of multiple candidate service
graphs. We will describe this step in detail in Section 4.2.

Step 3. Optimal composition selection.The destina-
tion collects the probes for a request with certain timeout
period, illustrated by Figure 5 (c). It then selects the best
qualified service graph based on the resource and QoS states
collected by the probes. We will discuss this step in detail
in Section 4.3.

Step 4. Setup service session.Finally, the destination
sends an acknowledge message along the reversed selected
service graph to confirm resource allocations and initialize
service components at each intermediate peer, illustrated by
Figure 5 (d). Then the application sender starts to stream
application data units along the selected service graph. If
no qualified service graph is found, the destination returns
a failure message to the source directly.

4.2 Per-hop Probe Processing

We now describe the per-hop probe processing algorithm
at a peervi which is illustrated by Figure 6. The per-hop
probe processing mainly includes four steps:

Step 2.1 Resource/QoS check and soft resource allo-
cation. When a peer receives a probe, it first check whether
the QoS and resource values of the probed service graph
already violate the user’s requirements. If the accumu-
lated QoS and resource values already violate the user’s
requirements, the probe is dropped immediately. Otherwise,
the peer will temporarily allocate required resources to
the expected application session. However, the resource
allocation issoft since it will be cancelled after certain
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Figure 6. Per-hop probe processing opera-
tions.

timeout period if the peer does not receive a confirmation
message. The purpose of this soft resource allocation is to
avoid conflicted resource admission caused by concurrent
probe processing. Thus, we can guarantee that the probed
resources are still available at the end of the probing
process.

Step 2.2 Derive next-hop functions. The peer derives
next-hop functions according to the dependency and com-
mutation relations in the function graph. All the functions
dependent on the current function are considered as next-
hop functions. For example, in Figure 6, the current func-
tion F1 has two dependent next-hop functionsF2 andF3.
For each next-hop functionFk derived above, if there is a
exchange link betweenFk andFl, thenFl is also considered
as a possible next-hop function. For example, in Figure 6,
sinceF3 can be commutated withF4, F4 is also considered
as the next-hop ofF1. The probing budget is proportionally
distributed among next-hop functions according to their
probing quotas.

Step 2.3 Select next-hop service components. For
each next-hop functionFk, vi first retrieves the meta-data
of duplicated service components using the decentralized
service discovery substrate described in Section 3. Letβk

denote the current probing budget forFk. Let αk define the
probing quota allocated forFk. Then the number of probes
that can be used byFk is denoted byIk = min(βk, αk).
LetZk denote the number of duplicated service components



for Fk. If Ik ≥ Zk, thenvi has enough probing budget to
probe all the duplicated service components. Each probe
has a new probing budgetb βk

Zk
c. However, ifIk < Zk, we

cannot probe all duplicated service components. Thenvi

needs to selectIk most promising ones based on the local
information. Currently,vi uses a composite metric for next-
hop service component selection, which comprehensively
considers various local information such as network delay
and available bandwidth to candidate next-hop service com-
ponents, failure probability of candidate next-hop service
components, and others. Finally,vi spawnsIk new probes
to examine the selected next-hop service components. Each
new probe has a probing budgetbβk

Ik
c.

Step 2.4 Set probe content. First, each new probe
inherits the QoS and resource states from its parent probe.
Then, vi adds the local QoS states (e.g.,Qp of current-
hop service component) and resource states (e.g., available
CPU, memory onvi) into the new probe, illustrated by
Figure 6.

4.3 Optimal Composition Selection

The destination selects the best qualified service graph
based on the information collected by the received probes.
If the function graph has a linear path structure, each
probe records a complete service composition. However, if
the function graph has a DAG structure, each probe only
collects the information for one composition branch. or
example, in Figure 5, each probe traverses either branch
F1 → F2 → F4 or F1 → F3 → F4. Thus, we need to
first merge the branches into complete service graphs.

Next, the destination selects the qualified service graphs
by comparing the QoS states of candidate service graphs
with the user’s QoS requirements. Then, the destination
selects the best service graph from all the qualified ones
based on the load balancing goal. For this purpose, we
define a cost aggregation functionψλ as follows,

ψλ =
∑

sj/vj∈λ

n∑

i=1

wi · r
sj

i

ra
vj

i

+ wn+1 ·
∑

`j/℘j∈λ

b`j

ba℘j
(1)

n+1∑

i=1

wi = 1, 0 ≤ wi ≤ 1, 1 ≤ i ≤ n + 1

wherer
sj

i defines the requirement ofsj for the i′th end-
system resource type (e.g., CPU, memory),ra

vj

i defines
the current resource availability on the peervj for the i′th
resource type,b`j defines the bandwidth requirement on
the service link̀ j , ba℘j defines the bandwidth availability
on the underlying overlay network path℘j , andwi repre-
sents the importance of different resource types. We can
customizeψλ by assigning higher weights to more critical
resource types. The rationale of usingψλ to evaluate the
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Figure 7. Proactive failure recovery for failure
resilient service composition.

load balancing property ofλ is that smallerψλ means that
the available resources along the service graph exceed the
required resources by a larger margin. Thus, the service
graph with the minimumψλ can achieve the best load
balancing in the current P2P computing environment.

Finally, the source receives an acknowledge message
carrying the information of the best service graph and a set
of other qualified service graphs that can be used as backup
service graphs for failure recovery, which will be introduced
in the next section.

5 Proactive Failure Recovery

SpiderNet adopts a proactive approach to maintaining
the quality of composed services during service runtime.
The source maintains a small number of backup service
graphs for each active service session. Thus, the source
can quickly recover failures by switching from the broken
service graph to one of the backup service graphs4. For
example, in Figure 7, the source maintains one backup
service graph for the service session. When the current
service graph (shown in solid line) fails, the source can
quickly switch to the backup service graph, shown in dash
line, to recover the failure5. Different from the conventional
multi-path routing, SpiderNet does not send real application
data along multiple service graphs to achieve fault toler-
ance. Instead, the source only periodically sends low-rate
measurement probes along these backup service graphs to
monitor their liveness and QoS/resource conditions. The
low-rate probing data is defined as the service graph main-
tenance overhead. The reactive failure recovery is triggered
only when all backup service graphs become unqualified
as well, which will invoke the BCP protocol to find a new
qualified service graph.

4Due to the space limitation, we omit the discussion about the failure
detection design details.

5We assume that the service component is either stateless or has only
soft states that can be recovered quickly by software.



The advantages of the proactive failure recovery are two
fold. First, we can achieve fast failure recovery by avoiding
the delay of finding a new service graph if the backup
service graph can be used, which is especially important
for soft real time applications such as multimedia stream-
ing. Second, we can reduce failure recovery overhead by
avoiding invoking the relatively expensive BCP protocol to
find a new service graph. Because P2P systems are highly
dynamic, service graphs are prone to failures, especially
for long-lived applications such as multimedia streaming.
Thus, it is worthwhile to pay a small maintenance overhead
for both fast failure recovery and greatly reduced composi-
tion probing overhead.

To achieve efficient proactive failure recovery, we need
to answer two key questions: (1) how many backup service
graphs should be maintained for a specific service session;
and (2) which qualified service graphs should be selected as
backup service graphs, which are described in the following
sections.

5.1 Backup Service Graph Number

If we maintain too many backup service graphs, the
maintenance overhead will be large. If we maintain too
few backup service graphs, we may fail in providing the
required quality assurances and failure resilience. Thus,
the number of backup service graphs represents the trade-
off between the maintenance overhead and the quality of
service composition. For efficiency, SpiderNet adopts an
adaptiveapproach to deciding the number of backup service
graphs based on the relationship between the QoSQλ and
failure probability6 Fλ of the current service graphλ and
the user required QoSQreq and failure probabilityF req.
Intuitively, if the QoS and failure probability of the current
service graph are much better than the user’s requirements,
we could just maintain a few backup service graphs. Oth-
erwise, we need to maintain more backup service graphs
to achieve required QoS assurances and failure resilience.
Formally, we can calculate the number of backup service
graphs, denoted byγ, as follows,

γ = min(bU · (
m∑

i=1

qλ
i

qreq
i

+
Fλ

F req
)c, (C − 1)) (2)

whereU is a configurable system parameter defining the
upper bound of backup service graph number, andC repre-
sents the total number of qualified service graphs found by
initial service composition using BCP.

6Due to the space limitation, we omit the detailed discussion about the
failure probability estimation. We can estimate the failure probability of
a service graph using combinatorial approach if we assume peers’ failure
probabilities are independent or using performance modelling tools such
as stochastic activity networks [4].

5.2 Backup Service Graph Selection

Given the number of backup service graphs, we need to
decide which qualified service graphs should be selected as
backup service graphs. On one hand, we want to achieve
failure resilience, which implies that backup service graphs
should be disjoint for failure independence; On the other
hand, we want to achieve real time failure recovery, which
implies that the backup service graph should be overlapped
with the current service graph for fast failure recovery.
Hence, we should carefully consider the tradeoff between
the above two conflicting requirements. SpiderNet selects
backup service graphs as follows:

• For each service componentsi on the current service
graph λ, we select a qualified service graph that
does not includesi but has the largest overlap (i.e.,
largest number of common service components) with
λ. Hence, ifsi fails, we can quickly recoverλ by
switching to the above backup service graph with
lowest overhead.

• In order to handle multiple concurrent service com-
ponent failures, we continue to select backup service
graphs, which do not include every two service com-
ponents, every three service components, and so forth.

• Under the constraint of backup service graph number,
we may not be able to include all of the above desired
backup service graphs. Thus, we start from select-
ing backup service graphs for recovering bottleneck
service components, which have the largest failure
probabilities.

6 Performance Evaluation

In this section, we evaluate the performance of SpiderNet
using both large-scale simulations and prototype implemen-
tation evaluated in the wide-area network testbed, called
PlanetLab [2].

6.1 Simulation Study

We have implemented an event-driven P2P service
overlay simulator using C++. The simulator first uses
the degree-based Internet topology generator Inet-3.0 [24]
to generate a power-law graph to represent the IP-layer
network. In our experiments, we used a 10,000 node
IP network. We then randomly select 1000 nodes as
SpiderNet nodes, which can be connected into different
overlay topologies (e.g., mesh, power-law graph). Each
node provides [1,3] service components whose provisioned
tasks are selected from 200 pre-defined functions. The
simulator performs IP-layer and overlay-layer data routing
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Figure 8. Performance comparison among
different approaches.

using shortest path routing algorithm. During each time
unit, certain number of composition requests are randomly
generated on different peers. We define the metric “QoS
success rate” to evaluate the performance of SpiderNet. A
QoS-aware service composition is said to be successful,
if and only if the composed service graph (1) satisfies
the function graph requirements, (2) satisfies the user’s
resource requirements (e.g., CPU, network bandwidth) , and
(3) satisfies the user’s QoS requirements (e.g., delay, data
loss rate). The composition success rate is calculated by
SuccessNumber
RequestNumber .

For comparison, we also implement three other common
approaches:optimal, random, andstatic algorithms. The
optimal algorithm uses unbounded network flooding, which
exhaustively searches all candidate service graphs to find
the best qualified service graph. The random algorithm
randomly selects a functionally qualified service component
for each function node in the function graph. The static
algorithm selects pre-defined service component for each
function node in the function graph. Both random and static
algorithms does not consider the user’s QoS and resource
requirements.

First, we compare the performance of different algo-
rithms. Figure 8 illustrates the composition success rate
achieved by different algorithms under different work-
load conditions. We used two variations of our scheme,
“probing-0.2” and “probing-01”, which uses 20% and 10%
of the probes required by the optimal algorithm, respec-
tively. Each round of simulation lasts 2000 time units.
Each success rate is averaged over all the requests generated
during 2000 time units simulation duration. We observe
that our solution can achieve near-optimal performance with
much lower overhead, and much better performance than
random and static algorithms. Compared to the global-
view-based centralized scheme, SpiderNet can achieve sim-
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Figure 10. Service session setup time in wide-area
networks.

ilar performance but with more than one order of magnitude
less overhead since SpiderNet does not perform periodical
global view maintenance.

Second, we evaluate the efficiency of our proactive fail-
ure recovery scheme. We use the metric “failure frequency”
to define the number of failures occurred during each time
unit. Figure 9 illustrates the failure frequency in a dynamic
P2P network where 1% of peers randomly fail during each
time unit. We observe that by maintaining on average 2.74
backup service graphs per session, the proactive failure
recovery can recovery almost all the failures.

6.2 Prototype Implementation and Evaluation

We have implemented a prototype of the SpiderNet
system. Each SpiderNet node software is a multi-threaded
running system written in about 13K lines of java code.
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As proof-of-concept, we also implemented a set of mul-
timedia service components to populate our P2P service
overlay. Each service component provide one of the
following six functions: (1) embedding weather forecast
ticker; (2) embedding stock ticker; (3) up-scaling video
frames; (4) down-scaling video frames; (5) extracting sub-
image; and (6) re-quantification of video frames. We deploy
one service component on each SpiderNet node, which is
randomly selected from the above six multimedia service
components. Our experiments use 102 Planetlab hosts that
are distributed across U.S. and Europe. Thus, the average
replication degree of each multimedia service is102/6 =
17. We then implement a customizable video streaming
application on top of the SpiderNet service composition
system. The customizable video streaming application
allows the user to perform wide-area P2P video streaming
with desired transformations and enriched content. We
have deployed and evaluated the SpiderNet system with
the video streaming application on the wide-area network
testbed PlanetLab [2]. The end-application on each node
periodically submits random service composition requests
to the SpiderNet system.

First, we measure the service session setup time in
the wide-area network, which includes (1) decentralized
service discovery time, (2) initial service graph finding time
using the bounded composition probing protocol, and (3)
service session initialization time. Figure 10 illustrates
the average service session setup time using more than
500 requests generated from 102 different PlanetLab hosts.
The current prototype of the SpiderNet system can setup a
service session within several seconds, which is acceptable
for long-lived streaming applications that usually lasts tens
of minutes or several hours. The above service setup
time can be reduced with implementation implements and

tunings.
Second, we compare the QoS provisioning performance

of SpiderNet with the random and optimal algorithms.
We consider service composition requiring three different
functions. We ask different approaches to find the best
qualified service composition that has minimum end-to-
end service delay. Because each service function has on
average 17 instances, the average number of probes required
by the optimal algorithm is173 = 4913. As shown
by Figure 11, the average service delay of the service
graphs discovered by the SpiderNet reduces with a growing
probing budget. When the probing budget is very low,
SpiderNet degenerates into the random algorithm, so the
overhead is low, but the service quality is not satisfactory.
When larger probing budget is allowed, the service graph
quality improves, and when the probing budget reaches a
certain threshold, it asymptotically approaches the optimal
performance. However, SpiderNet can achieve near optimal
performance with much lower overhead (i.e.,200/4913 =
4%) than the unbounded flooding scheme performing ex-
haustive searching.

7 Related Work

In this section, we briefly compare related work with
SpiderNet. Most P2P research projects have been focused
on providing scalable data lookup solutions (e.g., [22, 21])
for efficient data sharing. In contrast, SpiderNet focuses on
providing an integrated P2P service composition system to
enable efficient service sharing. Different from data shar-
ing, service sharing must consider additional application-
specified service constraints such as function constraints
and inter-service dependency/commutation relations.

Recently, several research projects (e.g., Ninja [9], SA-
HARA [17], CANS [7], Media Object Path [16], Gri-
PhyN [5]) have addressed the problems of dynamic service
composition under different context. In [11] and [12],
we proposed two centralized service composition solutions
for smart rooms and enterprise service overlay networks,
respectively. SpiderNet differs from the above work by
providing fully decentralized efficient service composition
solution that is suitable for P2P systems. Moreover, Spider-
Net focuses on addressing the challenge of scalable QoS
and resource management issues, which is important for
composing QoS sensitive distributed applications in P2P
computing environments.

8 Conclusion and Future Work

We have presented an integrated P2P service composi-
tion framework called SpiderNet. The major contributions
of this paper are summarized as follows. First, Spider-



Net provides fully decentralized QoS-aware and resource-
efficient service composition using bounded composition
probing. Second, SpiderNet provides proactive failure
recovery to achieve failure resilient service composition.
Third, SpiderNet achieves flexible service composition by
supporting directed acyclic graph composition topologies
and considering exchangeable composition orders to en-
hance the composed service’s quality. Finally, we demon-
strate the feasibility and efficiency of the SpiderNet system
using both large-scale simulations and prototype implemen-
tation. In the future, we will integrate decentralized trust
management into the current service composition frame-
work to support secure service composition. We also plan
to extend the current solution to support more expressive
service composition semantics such as conditional branch.
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