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Abstract

Service composition is highly desirable in peer-to-peer
(P2P) systems where application services are naturally
dispersed on distributed peers. However, itis challenging to
provide high quality and failure resilient service composi-
tion in P2P systems due to the decentralization requirement
and dynamic peer arrivals/departures. In this paper, we
present an integrated P2P service composition framework
called SpiderNet to address the challenges. At service setup =D teNewonk
phase, SpiderNet performs a novel bounded composition
probing protocol to provide scalable quality-aware and
resource-efficient service composition in a fully distributed
fashion. Moreover, SpiderNet supports directed acyclic
graph composition topologies and explores exchangeable

composition orders for enhanced service quality. During .
; . i . . ; cently, P2P systems have drawn much research attention
service runtime, SpiderNet provides proactive failure recov- ) . : .
with the popularity of various P2P file sharing systems

ery to overcome dynamic changes (e.g., peer departures) ; o
in P2P systems. The proactive failure recovery schemeSUCh as Gnutella [1]. In this paper, we proposeeavice

L . oriented P2P system calledP2P service overlaywhere
maintains a small number of dynamically selected backup . L
I . . : peers can provide not only media files but also a number of
compositions to achieve quick failure recovery for soft

realime streaming applications. We have implemented application service components such as media transcoding

a prototype of SpiderNet and conducted extensive exper-and data filtering as well as application-level data routing,

) . . . . which is illustrated by Figure 1. The goal of such a P2P
iments using both large-scale simulations and wide-area : : - . .

. .=~ service overlay is to enable efficies¢rvicé sharing that
network testbed. Experimental results show the feasibility

ey . . " . is beyond the file sharing offered by current P2P systems
and efficiency of the SpiderNet service composition solution . : :
[1]. Different from the conventional Grid systems [6, 14],
for P2P systems.

each peer exports directly application service components
for service sharing, which encompasses resource and data
_ sharing. The advantage of such a service-oriented Grid
1 Introduction system is to avoid both security problem in dynamic code
uploading and expensive code/data migration across wide-
Peer-to-peer (P2P) systems are special Grid systemd@rea networks.
where Grid nodes called peers can communicate directly P2P service overlays are attractive since they promotes
among themselves via application-level connections. Dif- Internet-scale service sharing without any administration
cost or centralized infrastructure support. New services can
be flexibly composed from available service components

@ Service component

Figure 1. Peer-to-peer service overlay.

ferent from the conventional distributed systems, P2P sys-
tems are often fully decentralized and self-organizing. Re-
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or U.S. Government. contained application unit.




based on the user’s function and quality-of-service (QoS)the conventional network probing, BCP has controllable
requirements. Thus, P2P service overlays can achieve betteoverhead and considers service-specific requirements such
scalability, manageability, and configurability in application as service function constraints and inter-service depen-
service provisioning than the conventional client-server sys- dency/commutation relations.

tem model. Service composition across wide-area networks
also becomes necessary in the P2P service overlay sinc%r
service components are naturally distributed on different
peers. Application examples of such P2P service overlay
include: (1)pervasive content distributignvhere the user
can request adaptive content distribution to heterogeneou
receivers with on-demand transformations and value-adde

customization; and (2follaborative scientific computa- backup compositions are adaptively selected based on the

tion [5], where geographically distributed research Iabs.conditions of the current composition and the user's QoS

fo01 1 conie complex centiic experments wih ower "edrements. Thus, we can avoid the delay and overhead
P P of triggering BCP to find a new composition if one of the

development and computation cost. maintained backup compositions can recover the failure.

Furthermore, SpiderNet provides efficient failure recov-
y to maintain the quality of composed services throughout
Sthe whole service session. SpiderNet adopts proactive

failure recovery scheme to achievast failure recovery
for soft realtime streaming applications. The proactive

ailure recovery approach maintainssmall number of
ackup compositions for each active service session. The

Although previous research projects (e.g., [15, 19, 3,

18, 5]) have addressed the problems of service/resourceS Y(;/e Semons_trate the fggsibiflity and ﬁﬁiciency of the
selection and composition, they present the following major SP'derNet service composition framework using prototype

limitations when applied to P2P systems. First, most Sys_|mplementat|on. We conduct extensive experiments by

tems adopt a centralized approach that assumes the glob:ﬂvatjaémg Jhe. dprototype on EOth ll)ardgep-fcalel_ S;)m;latll?r?
system states information. However, the above assumptiontest ed and wide-area network testbed PlanetLab [2]. The

becomes impractical for a large-scale P2P system that c)f,[enexperimental results show that SpiderNet can achieve near-

consists of thousands of peers dispersed across the Widethimal QoS-aware service composition performance with

area network. Moreover, extended wide-area network delaylow overhead. Compared to the centralized approach that

and dynamic peer arrivals/departures can exacerbate théﬁquwes global Etatzsbmalntenﬁnce, Spldnge'; can rgdgce
problem since it requires frequent information updates angN€ System overhead by more than one order of magnitude.

thus large system overhead in order to alleviate states infor_Moreove_r_, SF"der(’;'et can ?Dczhllbeve fallukreb resmgnt service
mation imprecision. Second, most previous work does not SOMPposition in-a dynamic network by maintaining a

consider the dynamic node changes that are common in Pz'{,ewr?umb.er (e.g., less than 3) of backup compositions for
systems. Third, most existing solutions only support linear each session.

service composition with fixed composition order, which  The rest of the paper is organized as follows. Section 2
greatly limits the applicability and efficiency of service presents the system model. Section 3 briefly describes the
composition. We have presented the preliminary designdecentralized service discovery scheme. Section 4 presents
of the P2P service composition framework in [10], which the initial decentralized QoS-aware service composition
partially addressed the first two problems. used by the service session setup phase. Section 5 describes

In this paper, we present an integrated P2P servicethe proactive failure recovery for maintaining the quality
composition framework called SpiderNet to address all of composed services during service sessions. Section
of the above problems within a unified framework. For 6 presents the experimental results. Section 7 briefly
scalability, SpiderNet executes a nowunded composi- discgsses related work. Finally, the paper concludes in
tion probing(BCP) protocol to provide fully decentralized Section 8.

QoS-aware service composition. In contrast to centralized

schemes (e.g., [18, 12]), BCP performs on-demand selec-

tive states collection using a limited number of composition 2
probes. The key observation behind our approach is that

because of the service function constraints, QoS-aware

service composition only needs the QoS and resource states
information about those peers that can provide required In this section, we first describe the SpiderNet sys-
service functions. These function-qualified peers oftentem model. The SpiderNet system is implemented as
form a small sub-graph of the whole P2P network. Thus, a distributed middleware infrastructure deployed in wide-

it is more efficient to perform on-demand selective states area networks, which can automatically map the user’s
collection than blindly maintain global states at each peer composite service request into an instantiated distributed
using expensive periodical states update. Compared taapplication service in the P2P service overlay.

System Model
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In order to process inputs and generate outputs, a specific
Figure 2. Service composition system archi- amount of resource® is required, which is a vector of
required resources (e.g., cpu, memory). Moreover, each
service component is associated with a performance quality
QP which is the same vector of performance parameters
. . (e.g., delay) as the user’'s QoS requiremepite!.
2.1 Composite Service Request Service components can be composed into a service
graph @) illustrated by the middle tier in Figure 2, which
The composite service request consists of two parts:collectively deliver advanced composite services to the end-
(1) function graph, shown by the top layer in Figure 2; yser. The link in the service graph is called service link that
and (2) quality-of-service (QoS) requiremeng“? = can be mapped to an overlay network path consisting of a
(41, .-, 4;¢9], where g; is a quality parameter such as set of overlay links. A service graph can be decomposed
delay and data loss réte The function graph consists of into multiple branch paths For example, in Figure 2, the
required service functionBy, ..., F}, that are connected by  service graph consists of two branch paths— sy — s13
dependency links and commutation links. The dependencyands; — s; — s;3.
link indicates that the output of one function is used as the
input by its successor. The commutation link means that2 3 peer-to-Peer Service Overlay
the composition order of two functions can be exchanged.
For example, in Figure 4, functiofi; (e.g., color filter) We describe the P2P service overlay, illustrated by the
can be exchanged with, (e.g., image scaling). The user pottom tier in Figure 2, using a directed gragh= (V, E),
can specify the function graph using the visual specification \ynere 1 represents the set of N peers1 < i < N, and

tecture.

environment such as QoSTalk [13, 23]. E represents the set dff overlay linkse;,1 < j < M.
o o _ Each peer provides a few number of service components.
2.2 Distributed Application Service The overlay network topology can be either maintained as

a topologically-aware overlay mesh [20] or dynamically
The service component, is a self-contained applica- ~ constructed based on each peer’s benefit [10]. However,
tion unit providing certain functionality, illustrated by Fig- ~our service composition system design is orthogonal to the
ure 3. Each service component includes one or more inputunderlying overlay topology.
queues for buffering input application data unit (ADU) from
the network. Whenever the queue is not empty, the service2.4 Problem Description
component takes an input ADU from each input queue, pro-
cesses them (e.g., audio mixing), and then sends the output We formulate the quality-aware service composition
ADU(s) to the network. Each service component accepts(QSC) problem in P2P service overlay as a two dimensional
inputs with a quality leve)™™ and generates outputs with a graph mapping problem, which is illustrated by Figure
quality level@Q°“t, both of which are vectors of application- 4. In one dimension, we can derive different composition
level quality parameters such as resolution and data formatpatterns from the original function graph by considering the
5 — , o commutat?on Iinks: In_ the cher dimen;ion, we can map
For simplicity, we assume that all QoS metrics are additive since 5. garyice function into different functionally duplicated
a multiplicative metric (e.g., loss rate) can be transformed into additive . .
parameters using logarithmic function. Note that bandwidth is considered S€Ivice components because of the inherent redundancy
as resource metric that will be described later. property of P2P systems [10]. These duplicated service




Commutation link the function name of the service component. It then stores

e _ .
function graph ,@5@ the meta-data into the DHT using the key. Because all

. (P @ functionally duplicated service component share the same
D‘;g'r'\‘,’iit:d EYT function name and thus the key, the DHT system will store

the meta-data list of the duplicated service components on
the same DHT assigned peer.

Service discovery When a peer wants to discover the
list of service components matching certain function name,
it can generate a key by applying the same secure hash
function on the function name. Then, it can generate a
guery message using the key which will be routed to the
Composition assigned peer by the DHT system. The peer then returns

pattemns the meta-data list of the duplicated service components to
the requesting peer.

components

Figure 4. Two dimensional graph mapping

problem. 4 Initial Service Composition

i ide th functionality but h In this section, we present the probing-based decentral-
components provide the same functionaiity but can Nave;, o 4 sopyice composition solution used at the service session
different QoS properties (e.g., service time) and available

the local host CPU E setup phase. We first introduce the bounded composition
resources on the local peer nhos e.g., , memary). Orprobing protocol. Then we describe the per-hop probe
example, in Figure 4, functio; can be mapped to two

duplicated service components and s,. Thus, we can processing algorithm, followed by the optimal composition

derive different service graphs from the function graph by selection algorithm.
considering the above two dimensions. The QSC problem
is to find the best mapping from the function graph to the
best qualified service graph that satisfies the user’s multi- _ ) - o
constrained QoS requiremer@s°? and achieves best load ~ Given a service composition request, the application
balancing in the current P2P service overlay. However, Sendef invokes the BCP protocol, which is illustrated by
the QSC problem is NP-hard since it subsumes the multi- Figure 5. The BCP protocol includes four major steps:
constrained path finding problem that has been proven to Step 1. Initialize the probe. The source first generates
be NP-hard [8]. Thus, our goal is to provide efficient, fully @ composition probing message, called probe, which is

decentralized service composition solution that is suitable illustrated by Figure 5 (a). The probe carries the in-
for P2P computing environment. formation of function graph and the user's QoS/resource

requirements. To control the probing overhead, the probe
carries gprobing budget5) that defines how many probes

we could use for a composition request. The probing budget
represents the trade-off between the probing overhead and

This section briefly describes our decentralized service composition optimality. Larger probing budget allows us
discovery substrate that allows each peer to locate service% examine more candidate service graphs, which allows us

in the PZ,P service ovgrlay without assuming a centraligedto find a better qualified service graph. Thus, our solution
service directory. We implement the decentralized service .o, yovide an adaptive composition solution with tunable
discovery based on the Pastry distributed hash table (DHT)performance by properly adjusting the probing budget. For

system [22]. The basic function of the DHT system iS o, 2516 we can use larger probing budget for the request
to map a data key toa responsmle peer. We realize the (1) higher priority, (2) stricter QoS constraints, or (3)
keyword-based service discovery by adding one meta-datamore complex function. We can also adaptively adjust the

layer on top of the DHT system. Due to the space limitation, 1, o1ing hudget based on the user feedbacks and historical

we only briefly describe the decentralized service discovery information

as fSOIIO\.NS: : . Wh h To achieve efficient composition probing, we associate a
ervice registration - When ahpeer wants to share ab probing quota(a;) with each functionF; in the function

service component, It registers the service component ygraph, which defines the number of duplicated service

storing the component’s static meta-data (e.qg., Iocation,Com onents to probe foF:. The probing quota allows
input QoS, output QoS) into the DHT system. The peer P P v P g9

first generates a key by applying a secure hash function on  3For simplicity, we use a unicast streaming application as an example.

4.1 Bounded Composition Probing Protocol

3 Decentralized Service Discovery
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Figure 5. Bounded composition probing protocol.
us to achieve differentiated allocation of the probes among Funciion graph
different functions. For example, we can assign higher Q’; a
probing quota for the function with more duplicated service @ @ F, (v, v,, fresource], [GS], budgetc 4 |

components. NE
Step 2. Distributed probe processing. Each peer
processes a probe independently using only local informa- L _{Q0S}.budget=16...
tion until the probe arrives at the destination, illustrated by Received probe  Peer host
Figure 5 (b). The goal of hop-by-hop distributed probe
processing is to collect needed information and perform
intelligent parallel searching of multiple candidate service
graphs. We will describe this step in detail in Section 4.2.
Step 3. Optimal composition selection.The destina-
tion collects the probes for a request with certain timeout
period, illustrated by Figure 5 (c). It then selects the best timeout period if the peer does not receive a confirmation
gualified service graph based on the resource and QoS statgsessage. The purpose of this soft resource allocation is to
collected by the probes. We will discuss this step in detail avoid conflicted resource admission caused by concurrent
in Section 4.3. probe processing. Thus, we can guarantee that the probed
Step 4. Setup service sessiorkinally, the destination  resources are still available at the end of the probing
sends an acknowledge message along the reversed select@tocess.
service graph to confirm resource allocations and initialize ~ Step 2.2 Derive next-hop functions The peer derives
service components at each intermediate peer, illustrated byrext-hop functions according to the dependency and com-
Figure 5 (d). Then the application sender starts to streammutation relations in the function graph. All the functions
application data units along the selected service graph. Ifdependent on the current function are considered as next-
no qualified service graph is found, the destination returnshop functions. For example, in Figure 6, the current func-

‘ {v,, v }, {resource}, {QoS}, budget= 4,... ‘

[{v,. vg}. {resource}, {QoS}, budget= 2.... |

\ {v,, v;}, {resource}, {QoS}, budget= 2,... \

Spawned new probes to send

Figure 6. Per-hop probe processing opera-
tions.

a failure message to the source directly. tion F; has two dependent next-hop functiofs and F3.
For each next-hop functioh}, derived above, if there is a
4.2 Per-hop Probe Processing exchange link betweeR), andF;, thenF; is also considered

as a possible next-hop function. For example, in Figure 6,
We now describe the per-hop probe processing algorithmsinceF5; can be commutated withy, F is also considered
at a peemw; which is illustrated by Figure 6. The per-hop as the next-hop af;. The probing budget is proportionally
probe processing mainly includes four steps: distributed among next-hop functions according to their
Step 2.1 Resource/QoS check and soft resource allo- probing quotas.
cation. When a peer receives a probe, it first check whether ~ Step 2.3 Select next-hop service componentsFor
the QoS and resource values of the probed service grapleach next-hop functiod’;, v; first retrieves the meta-data
already violate the user's requirements. If the accumu- of duplicated service components using the decentralized
lated QoS and resource values already violate the user'sservice discovery substrate described in Section 3.5}et
requirements, the probe is dropped immediately. Otherwise,denote the current probing budget fy. Let o define the
the peer will temporarily allocate required resources to probing quota allocated fdf;,. Then the number of probes
the expected application session. However, the resourcehat can be used by}, is denoted byl, = min(0, ax).
allocation issoft since it will be cancelled after certain LetZ; denote the number of duplicated service components



for Fy. If I, > Zj, thenv; has enough probing budget to Current service __ .  Backupservice

probe all the duplicated service components. Each probe graph E, graph
has a new probing budg@(}’;J. However, ifl, < Z, we F GO -
cannot probe all duplicated service components. Then : /, N
needs to select, most promising ones based on the local % e AN
information. Currentlyy; uses a composite metric for next- — \,-/\ F, /\/\@
hop service component selection, which comprehensively ’._\_ G p—
considers various local information such as network delay TR

and available bandwidth to candidate next-hop service com-

ponents, failure probability of candidate next-hop service
components, and others. Finally, spawnsl;, new probes

to examine the selected next-hop service components. Each
new probe has a probing budq%j.

Step 2.4 Set probe content First, each new probe
inherits the QoS and resource states from its parent probe.
Then, v; adds the local QoS states (e.@? of current- load balancing property of is that smaller)® means that
hop service component) and resource states (e.g., availabléhe available resources along the service graph exceed the
CPU, memory ony;) into the new probe, illustrated by required resources by a larger margin. Thus, the service

Figure 7. Proactive failure recovery for failure
resilient service composition.

Figure 6. graph with the minimumy)* can achieve the best load
balancing in the current P2P computing environment.
4.3 Optimal Composition Selection Finally, the source receives an acknowledge message

carrying the information of the best service graph and a set

The destination selects the best qualified service graphCf other qualified service graphs that can be used as backup
based on the information collected by the received probes S€rvice graphs for failure recovery, which will be introduced
If the function graph has a linear path structure, each N the next section.
probe records a complete service composition. However, if
the function graph has a DAG structure, each probe only5 Proactive Failure Recovery
collects the information for one composition branch. or

example, in Figure 5, each probe traverses either branch SpiderNet adopts a proactive approach to maintaining

By — Fy — Fyor Fy — Fy — Fy. Thus, we need 10 he quality of composed services during service runtime.

first merge the branches into complete service graphs.  The source maintains a small number of backup service
Next, the destination selects the qualified service graphsgrapr1S for each active service session. Thus, the source

by comparing the QoS states of candidate service graphgan quickly recover failures by switching from the broken
with the user's QoS requirements. Then, the destinationggpyice graph to one of the backup service grapHsor
selects the best service graph from all the qualified ONeSgyample, in Figure 7, the source maintains one backup
based on the load balancing goal. For this purpose, Wegenjice graph for the service session. When the current
define a cost aggregation functigrt as follows, service graph (shown in solid line) fails, the source can
quickly switch to the backup service graph, shown in dash

n S 0

P = Z Z w; - L + Wy - Z b (1) line, to recover the failufe Different from the conventional

: ra;’ bas: lti-path routing, SpiderNet d d real applicati
s; /oy EN im1 i S multi-path routing, SpiderNet does not send real application
ntl data along multiple service graphs to achieve fault toler-
Z w=1.0<w <1.1<i<n+1 ance. Instead, the source only periodically sends low-rate

(2 ’ — = 9 — — .
P measurement probes along these backup service graphs to

monitor their liveness and QoS/resource conditions. The
wherer;’ defines the requirement af; for the i’th end- low-rate probing data is defined as the service graph main-
system resource type (e.g., CPU, memony),” defines tenance overhead. The reactive failure recovery is triggered
the current resource availability on the peerfor thei'th only when all backup service graphs become unqualified

resource typep’s defines the bandwidth requirement on as well, which will invoke the BCP protocol to find a new
the service link/;, ba®7 defines the bandwidth availability —qualified service graph.

on the underlying overlay network pagh, andw; repre- pr— — i the di on about the fail
. . ue to the space limitation, we omi € discussion abou e Tallure
sents the importance of different resource types. We CaNjetection design details.

customizey” by assigning higher weights to more critical 5We assume that the service component is either stateless or has only
resource types. The rationale of usiig to evaluate the  soft states that can be recovered quickly by software.




The advantages of the proactive failure recovery are two 5.2 Backup Service Graph Selection
fold. First, we can achieve fast failure recovery by avoiding
the delay of finding a new service graph if the backup  Given the number of backup service graphs, we need to
service graph can be used, which is especially importantdecide which qualified service graphs should be selected as
for soft real time applications such as multimedia stream- backup service graphs. On one hand, we want to achieve
ing. Second, we can reduce failure recovery overhead byfailure resilience which implies that backup service graphs
avoiding invoking the relatively expensive BCP protocol to should be disjoint for failure independence; On the other
find a new service graph. Because P2P systems are highlyhand, we want to achieve real time failure recovery, which
dynamic, service graphs are prone to failures, especiallyimplies that the backup service graph should be overlapped
for long-lived applications such as multimedia streaming. with the current service graph for fast failure recovery.
Thus, it is worthwhile to pay a small maintenance overhead Hence, we should carefully consider the tradeoff between
for both fast failure recovery and greatly reduced composi- the above two conflicting requirements. SpiderNet selects
tion probing overhead. backup service graphs as follows:

To achieve efficient proactive failure recovery, we need
to answer two key questions: (1) how many backup service
graphs should be maintained for a specific service session;
and (2) which qualified service graphs should be selected as
backup service graphs, which are described in the following
sections.

e For each service componesiton the current service
graph A, we select a qualified service graph that
does not includes; but has the largest overlap (i.e.,
largest number of common service components) with
A. Hence, ifs; fails, we can quickly recoveA by
switching to the above backup service graph with

5.1 Backup Service Graph Number lowest overhead.

e In order to handle multiple concurrent service com-

If we maintain too many backup service graphs, the
maintenance overhead will be large. If we maintain too
few backup service graphs, we may fail in providing the
required quality assurances and failure resilience. Thus,
the number of backup service graphs represents the trade-
off between the maintenance overhead and the quality of
service composition. For efficiency, SpiderNet adopts an
adaptiveapproach to deciding the number of backup service
graphs based on the relationship between the Qd&nd
failure probabilitf F* of the current service graph and
the user required Qo®"*¢ and failure probabilityF<4.
Intuitively, if the QoS and failure probability of the current
service graph are much better than the user’s requirements,

ponent failures, we continue to select backup service
graphs, which do not include every two service com-
ponents, every three service components, and so forth.

e Under the constraint of backup service graph number,

we may not be able to include all of the above desired
backup service graphs. Thus, we start from select-
ing backup service graphs for recovering bottleneck
service components, which have the largest failure
probabilities.

Performance Evaluation

we could just maintain a few backup service graphs. Oth- Inthis section, we evaluate the performance of SpiderNet
erwise, we need to maintain more backup service graphsusing both large-scale simulations and prototype implemen-
to achieve required QoS assurances and failure resiliencetation evaluated in the wide-area network testbed, called
Formally, we can calculate the number of backup service PlanetLab [2].

graphs, denoted by, as follows,

6.1 Simulation Study

req + N
q Frea

=1

v =min([U - (

), (€ =1)) )

We have implemented an event-driven P2P service
overlay simulator using C++. The simulator first uses
whereU is a configurable system parameter defining the the degree-based Internet topology generator Inet-3.0 [24]
upper bound of backup service graph number, @répre-  to generate a power-law graph to represent the IP-layer
sents the total number of qualified service graphs found bynetwork. In our experiments, we used a 10,000 node
initial service composition using BCP. IP network. We then randomly select 1000 nodes as
SpiderNet nodes, which can be connected into different

. 5Due to thg _space'limit.ation, we omit the detailed d?scussion apqut the gverlay topologies (e.g., mesh, power-law graph). Each
fallure_probablllty e_stlmatloq. We‘can estlmate_ the failure probabl!lty_of node provides [1,3] service components whose provisioned
a service graph using combinatorial approach if we assume peers’ failure . .
probabilities are independent or using performance modelling tools suchté_lSkS are selected from 200 pre-defined functions. The
as stochastic activity networks [4]. simulator performs IP-layer and overlay-layer data routing
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Figure 9. Failure frequency comparison in a dy-

Figure 8. Performance comparison among namic P2P network.

different approaches.

7000 11 @ Service composition

using shortest path routing algorithm. During each time
unit, certain number of composition requests are randomly
generated on different peers. We define the metric “QoS
success rate” to evaluate the performance of SpiderNet. A
QoS-aware service composition is said to be successful,
if and only if the composed service graph (1) satisfies
the function graph requirements, (2) satisfies the user’s
resource requirements (e.g., CPU, network bandwidth) , and
(3) satisfies the user's QoS requirements (e.g., delay, data

loss rate). The composition success rate is calculated by 2 3 4 5 6

Success Number i
Request Number* Function Number

For comparison, we also implement three other common
approachespptimal random andstatic algorithms. The
Optlmal algorithm uses unbounded network ﬂOOding, which Figure 10. Service session Setup time in wide-area
exhaustively searches all candidate service graphs to find petworks.
the best qualified service graph. The random algorithm
randomly selects a functionally qualified service component
for each function node in the function graph. The static
algorithm selects pre-defined service component for eac
function node in the function graph. Both random and static
algorithms does not consider the user's QoS and resourcé
requirements.

@ Service discovery

Average Setup Time (ms)

hilar performance but with more than one order of magnitude
less overhead since SpiderNet does not perform periodical
lobal view maintenance.
Second, we evaluate the efficiency of our proactive fail-
First, we compare the performance of different algo- ure recovery scheme. We use the metric“failu_re frequen_cy”
rithms. Figure 8 illustrates the composition success rate!© define the number of failures occurred during each time
achieved by different algorithms under different work- unit. Figure 9 illustrates the failure frequency ina qunamlc
load conditions. We used two variations of our scheme, P2P network where 1% of peers randomly fail during each
“probing-0.2” and “probing-01", which uses 20% and 10% time unit. We; observe that by mai_ntaining on average 2_.74
of the probes required by the optimal algorithm, respec- backup service graphs per session, the proactive failure

tively. Each round of simulation lasts 2000 time units. '€COVery can recovery almost all the failures.

Each success rate is averaged over all the requests generated

during 2000 time units simulation duration. We observe 6.2 Prototype Implementation and Evaluation

that our solution can achieve near-optimal performance with

much lower overhead, and much better performance than We have implemented a prototype of the SpiderNet
random and static algorithms. Compared to the global- system. Each SpiderNet node software is a multi-threaded
view-based centralized scheme, SpiderNet can achieve simrunning system written in about 13K lines of java code.



tunings.
4500 g

Second, we compare the QoS provisioning performance
4000 . . . .
5 3500 Random 1 of SpiderNet with the random and optimal algorithms.
E 00 § —m—Our approach || We consider service composition requiring three different
T 500 \ —— Optimal functions. We ask different approaches to find the best
3 5000 \ qualified service composition that has minimum end-to-
% 1500 \ end service delay. Because each service function has on
g 1000 : average 17 instances, the average number of probes required
S 500 by the optimal algorithm isl73 = 4913. As shown
0 . . . . . . by Figure 11, the average service delay of the service
10100 200300 400 500 1000 graphs discovered by the SpiderNet reduces with a growing
probing budget probing budget. When the probing budget is very low,
SpiderNet degenerates into the random algorithm, so the
overhead is low, but the service quality is not satisfactory.
Figure 11. Performance comparison among When larger probing budget is allowed, the service graph
random, SpiderNet, and optimal algorithms. quality improves, and when the probing budget reaches a

certain threshold, it asymptotically approaches the optimal
performance. However, SpiderNet can achieve near optimal
performance with much lower overhead (i.200/4913 =

As proof-of-concept, we also implemented a set of mul- 4%) than the uqbounded flooding scheme performing ex-
timedia service components to populate our P2P serviceh@ustive searching.

overlay. Each service component provide one of the

following six functions: (1) embedding weather forecast 7 Related Work

ticker; (2) embedding stock ticker; (3) up-scaling video

frames; (4) down-scaling video frames; (5) extracting sub- In this section, we briefly compare related work with

image; and (6) re-quantification of video frames. We deploy SpiderNet. Most P2P research projects have been focused
one service component on each SpiderNet node, which is :

randomly selected from the above six multimedia service o providing scalable data lookup solutions (e.g,, [22, 21])
y . for efficient data sharing. In contrast, SpiderNet focuses on
components. Our experiments use 102 Planetlab hosts that

L roviding an integrated P2P servi mposition system t
are distributed across U.S. and Europe. Thus, the averag(gJ oviding an integ a_ed service compostton system fo
o . . . énable efficient service sharing. Different from data shar-
replication degree of each multimedia servicd (/6 =

17 We then implement a customizable video streamin ing, service sharing must consider additional application-
a ' lication on top of the SpiderNet service com ositior? specified service constraints such as function constraints
P P . pia . POSINON -, 14 inter-service dependency/commutation relations.
system. The customizable video streaming application : -
. . . Recently, several research projects (e.g., Ninja [9], SA-
allows the user to perform wide-area P2P video streammgH

) . ) : ARA [17], CANS [7], Media Object Path [16], Gri-
with desired transformations and enriched content. We PhyN [5]) have addressed the problems of dynamic service
have deployed and evaluated the SpiderNet system with y P Y

composition under different context. In [11] and [12],

the video streaming application on the wide-area network we proposed two centralized service composition solutions
testbed PlanetLab [2]. The end-application on each node prop P

- . . o for smart rooms and enterprise service overlay networks,
periodically submits random service composition requests . . .
to the SpiderNet system. respectively. SpiderNet differs from the above work by

_ ) _ ) ~ providing fully decentralized efficient service composition
First, we measure the service session setup time ingo|ytion that is suitable for P2P systems. Moreover, Spider-

the wide-area network, which includes (1) decentralized Net focuses on addressing the challenge of scalable QoS

service discovery time, (2) initial service graph finding time gnd resource management issues, which is important for

using the bounded composition probing protocol, and (3) composing QoS sensitive distributed applications in P2P
service session initialization time. Figure 10 illustrates computing environments.

the average service session setup time using more than

500 requests generated from 102 different PlanetLab hosts, .

The current prototype of the SpiderNet system can setup a8 Conclusion and Future Work

service session within several seconds, which is acceptable

for long-lived streaming applications that usually lasts tens  We have presented an integrated P2P service composi-
of minutes or several hours. The above service setuption framework called SpiderNet. The major contributions
time can be reduced with implementation implements and of this paper are summarized as follows. First, Spider-



Net provides fully decentralized QoS-aware and resource-
efficient service composition using bounded composition
probing. Second, SpiderNet provides proactive failure [12]
recovery to achieve failure resilient service composition.
Third, SpiderNet achieves flexible service composition by
supporting directed acyclic graph composition topologies
and considering exchangeable composition orders to en-
hance the composed service’s quality. Finally, we demon-[13]
strate the feasibility and efficiency of the SpiderNet system
using both large-scale simulations and prototype implemen-
tation. In the future, we will integrate decentralized trust
management into the current service composition frame-
work to support secure service composition. We also plan[14]
to extend the current solution to support more expressive
service composition semantics such as conditional branch.
[15]
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