
From Academia to
Industry

Perspectives on research directions in large scale
computation geared to industrial impact

P. Oscar Boykin | oscar@twitter.com | @posco
#hpdc

Life in Academia

Life in Industry

The mismatch

My wish-list problems

Impacting Industry

•

•

•

•

•

In Academia:

Assistant Prof. in ECE at Univ. of Fl.

P2P Networks

Self-configuring “grids”

Virtual Networking

ad-hoc resource discovery

CPU-bound distributed computing
(generally ignored data-locality)

•
•
•
•
•
•

“Customers” in
Academia

Colleagues: review your papers

Collaborators: systems researchers often
work with some domain expert.

Funding agencies: feed the triangle (funds ->
students -> papers -> funds ...)

Value ideas, generally put less weight on well
engineered solutions.

•
•

•

•

These customers don’t
place very similar

demands to Industrial
customers

Industry

Customers in Industry

People paying to use your product, they
will abandon if you do poor work.

Teams dependent on your systems to
deliver to the above. They can abandon
too.

New systems need to save time, money,
and/or effort.

•

•

•

Why my work is not
applicable at Twitter

Constant code change: self configuring
doesn’t lower cost, but increases risk.

IO-bound processing: my academic work
was focused on smaller data, with bigger
compute. We have HUGE data, but easy
compute.

Little attempt to understand the pain
points of industry, assumption of
unsophistication.

•

•

•

Ideas are cheap

Large numbers of PhDs are employed by
Twitter, Facebook, Google, etc.

Everyone has ideas, most of them good,
but our systems are still too immature to
make ideas a bottleneck.

Never-the-less: Academia could help solve
more industry problems.

•

•

•

At Twitter
see code: http://github.com/twitter

Co-developed, @scalding, a Scala
Fuctional Programming API for Hadoop.
Enables easy deploy of giant (90 or more)
Map/Reduce pipelines.

Leveraged abstract algebra (Monoids!) to
isolate logic from systems in streaming
compute and Matrix systems.

Implemented sketching algorithms as
Monoids to encourage fast+cheap
approximations: github.com/twitter/algebird

•

•

•

Twitter Scale
Tens of Thousands Machines

Linux 2.6.39 mostly

Huge Hadoop Clusters for Analytics (tens of k
jobs/day)

100TB+ of data digested daily

Real systems do real
work.

My Wish-list

1: Data Pipelines

Elegant Model for Big
Data Pipelines

~100 Terabytes a day

Sometimes there are errors
at ingest that can be repaired

Some nodes are functions
(which have bugs and are fixed)

Sometimes we need to
backfill

Data schema

•
•

•

•

•

Elegant Model for Big
Data Pipelines

Time looks special, why? How to
model?

Immutable/write-once is
appealing, but what about bugs?

How to deal with outages in the
pipeline? How to deal with
priorities in recovery? Total Loss?

How to alert when input

•

•

•

•

IDEAS ARE CHEAP!

Give Us

Theory, proofs, Iron-clad and large-scale
experiments

Real (and usable) code, i.e. @Amplab
at Berkeley

Collaboration: sending summer interns.

Employees: PhD grads to solve hardcore
systems problems with your research.

•

•

•
•

2: Storing and Serving
Big Data

Different entities have
very different access
patterns and lifetimes

Storage Problems
How to leverage the latency hierarchy? cache, main

memory, networked memory, in data-center SSD, in DC
hard-disk, cross-DC disk, tape?

Can we find laws or approximations to govern relative
allocation given power-laws everywhere?

Can we get erasure coding as widely deployed as
compression?

Theory to give general combination of sampling/sketching
algorithms to give approximate answers fast (e.g. memcache)
and detailed answers as we dig deeper (like a progressive
JPEG, exact data on slow, cheap storage, memcache that

•

•

•

•

3. System/Function
Abstractions

f f f

+ + + + +

Input

(Flat)Mappers

Reducers

HDFS/Queue

HDFS/Queue
Map/Reduce is
universal, and
allowed us to

separate systems
from logic

(instruction set
for massive

parallelization)

f f f

+ + + + +

Input

(Flat)Mappers

Reducers

HDFS/Queue

HDFS/Queue

Better system/function
abstractions

More CLEAN separation of logic and systems that allow
optimizations, flexibility in deploy, and generality.

Graph systems (e.g. GraphLab, Giraph) are not standard.
Why? Lack of generality, bad implementations? Poor
evangelism of value?

Can we be less coarse than Map/Reduce, but be more
coarse than MPI?

Can we make a “Hadoop for Linear Algebra” (matrices,
tensors, vectors, products, sums, regressions) that is
comfortable to program, scalable and performant? Minimal

•

•

•

•

Impacting Industry

Timescale

Short term: 1 week, Near term: 1-2
months, Long term: 3-6 months

Have to deliver something of value
soon.

•

•

Biggest Surprise

Scale: 10 TB memcache? no problem, 20
TB intermediate output in Hadoop? ok.

Code velocity: everything is in constant
flux. Always replacing the engine with the
car in motion. Constant deploys.

Subtleties of small problems: graph of
code versioning (diamond deps FFFUUUU,
all tools are immature), serialization.

•

•

•

Send your students.
Do a sabbatical.

Attack industrially
relevant problems.

Thank you!
@posco

http://twitter.com/posco
oscar@twitter.com

