
Fast Iterative Graph Computation with
Resource Aware Graph Parallel Abstraction

Yang Zhou, Ling Liu, Kisung Lee, Calton Pu, Qi Zhang

Distributed Data Intensive Systems Lab (DiSL)
School of Computer Science

Georgia Institute of Technology

NSA-RD-2013-056001v1

Brain scale. . .

100 billion vertices, 100 trillion edges

2.08 mNA · bytes2 (molar bytes) adjacency matrix

2.84 PB adjacency list

2.84 PB edge list

Human connectome.
Gerhard et al., Frontiers in Neuroinformatics 5(3), 2011

2
NA = 6.022⇥ 1023mol�1

Paul Burkhardt, Chris Waring An NSA Big Graph experiment

GraphLego: Motivation
•  Graphs are everywhere: Internet, Web, Road

networks, Protein Interaction Networks, Utility Grids
•  Scale of Graphs studied in literature: billions of

edges, tens/hundreds of GBs

•  Brain Scale: 100 billion vertices, 100 trillion edges

 6/18/15

HPDC’15

2

[Paul Burkhardt, Chris Waring 2013]

6/18/15

HPDC’15

3

Existing Graph Processing Systems

•  Single PC Systems
–  GraphLab [Low et al., UAI'10]
–  GraphChi [Kyrola et al., OSDI'12]
–  X-Stream [Roy et al., SOSP'13]
–  TurboGraph [Han et al., KDD‘13]

•  Distributed Shared Memory Systems
–  Pregel [Malewicz et al., SIGMOD'10]
–  Giraph/Hama – Apache Software Foundation
–  Distributed GraphLab [Low et al., VLDB'12]
–  PowerGraph [Gonzalez et al., OSDI'12]
–  SPARK-GraphX [Gonzalez et al., OSDI'14]

6/18/15

HPDC’15

4

Vertex-centric Computation Model

•  Think like a vertex
•  vertex_scatter(vertex v)

–  send updates over outgoing edges of v
•  vertex_gather(vertex v)

–  apply updates from inbound edges of v

•  repeat the computation iterations
–  for all vertices v

•  vertex_scatter(v)
–  for all vertices v

•  vertex_gather(v)

6/18/15

HPDC’15

5

Edge-centric
Computation Model (X-Stream)

•  Think like an edge (source vertex and destination vertex)

•  edge_scatter(edge e)
–  send update over e (from source vertex to destination vertex)

•  update_gather(update u)
–  apply update u to u.destination

•  repeat the computation iterations
–  for all edges e

•  edge_scatter(e)
–  for all updates u

•  update_gather(u)

6/18/15

HPDC’15

6

Challenges of Big Graphs
•  Graph size v.s. limited resource

–  Handling big graphs with billions of vertices and edges in memory may
require hundreds of gigabytes of DRAM

•  High-degree vertices
–  In uk-union with 133.6M vertices: the maximum indegree is 6,366,525 and

the maximum outdegree is 22,429

•  Skewed vertex degree distribution
–  In Yahoo web with 1.4B vertices: the average vertex degree is 4.7, 49% of

the vertices have degree zero and the maximum indegree is 7,637,656

•  Skewed edge weight distribution
–  In DBLP with 0.96M vertices: among 389 coauthors of Elisa Bertino, she has

only one coauthored paper with 198 coauthors, two coauthored papers with
74 coauthors, three coauthored papers with 30 coauthors, and coauthored
paper larger than 4 with 87 coauthors

6/18/15

HPDC’15

7

Real-world Big Graphs

6/18/15

HPDC’15

8

Graph Processing Systems: Challenges
•  Diverse types of processed graphs

–  Simple graph: not allow for parallel edges (multiple edges) between a pair of
vertices

–  Multigraph: allow for parallel edges between a pair of vertices

•  Different kinds of graph applications
–  Matrix-vector multiplication and graph traversal with the cost of O(n2)
–  Matrix-matrix multiplication with the cost of O(n3)

•  Random access
–  It is inefficient for both access and storage. A bunch of random accesses

are necessary but would hurt the performance of graph processing systems

•  Workload imbalance
–  The time of computing on a vertex and its edges is much faster than the

time to access to the vertex state and its edge data in memory or on disk
–  The computation workloads on different vertices are significantly

imbalanced due to the highly skewed vertex degree distribution.

6/18/15

HPDC’15

9

GraphLego: Our Approach

•  Flexible multi-level hierarchical graph parallel abstractions
–  Model a large graph as a 3D cube with source vertex, destination vertex and

edge weight as the dimensions
–  Partitioning a big graph by: slice, strip, dice based graph partitioning

•  Access Locality Optimization
–  Dice-based data placement: store a large graph on disk by minimizing non-

sequential disk access and enabling more structured in-memory access
–  Construct partition-to-chunk index and vertex-to-partition index to facilitate fast

access to slices, strips and dices
–  implement partition-level in-memory gzip compression to optimize disk I/Os

•  Optimization for Partitioning Parameters
–  Build a regression-based learning model to discover the latent relationship

between the number of partitions and the runtime

6/18/15

HPDC’15

10

Modeling a Graph as a 3D Cube
•  Model a directed graph G=(V,E,W) as a 3D cube I=(S,D,E,W)

with source vertices (S=V), destination vertices (D=V) and
edge weights (W) as the three dimensions

6/18/15

HPDC’15

11

Multi-level Hierarchical Graph Parallel
Abstractions

6/18/15

HPDC’15

12

Slice Partitioning: DBLP Example

6/18/15

HPDC’15

13

Strip Partitioning of DB Slice

6/18/15

HPDC’15

14

Dice Partitioning: An Example

SVP: v1,v2,v3, v5,v6,v7, v11, v12, v15

DVP: v2,v3,v4,v5,v6, v7,v8,v9,v10,v11, v12,v13,v14,v15.v16

6/18/15

HPDC’15

15

Dice Partition Storage (OEDs)

6/18/15

HPDC’15

16

Advantage: Multi-level Hierarchical
Graph Parallel Abstractions

•  Choose smaller subgraph blocks such as dice partition or
strip partition to balance the parallel computation efficiency
among partition blocks

•  Use larger subgraph blocks such as slice partition or strip
partition to maximize sequential access and minimize
random access

6/18/15

HPDC’15

17

Programmable Interface
•  vertex centric programming API, such as Scatter and Gather.

•  Compile iterative algorithms into a sequence of internal function (routine)
calls that understand the internal data structures for accessing the graph
by different types of subgraph partition blocks

Gather vertex updates
from neighbor vertices
and incoming edges

Scatter vertex
updates to
outgoing edges

6/18/15

HPDC’15

18

Partition-to-chunk Index
Vertex-to-partition Index

•  The dice-level index is a dense index that maps a dice ID and its DVP (or SVP)
to the chunks on disk where the corresponding dice partition is stored physically

•  The strip-level index is a two level sparse index, which maps a strip ID to the
dice-level index-blocks and then map each dice ID to the dice partition chunks in
the physical storage

•  The slice level index is a three-level sparse index with slice index blocks at the
top, strip index blocks at the middle and dice index blocks at the bottom,
enabling fast retrieval of dices with a slice-specific condition

6/18/15

HPDC’15

19

Partition-level Compression
•  Iterative computations on large graphs incur non-

trivial cost for the I/O processing
–  The I/O processing of Twitter dataset on a PC with 4 CPU

cores and 16GB memory takes 50.2% of the total running
time for PageRank (5 iterations)

•  Apply in-memory gzip compression to transform
each graph partition block into a compressed format
before storing them on disk

6/18/15

HPDC’15

20

Configuration of Partitioning Parameters
•  User definition
•  Simple estimation
•  Regression-based learning

–  Construct a polynomial regression model to model the nonlinear relationship between
independent variables p, q, r (partition parameters) and dependent variable T (runtime) with
latent coefficient αijk and error term ε	

–  The goal of regression-based learning is to determine the latent αijk and ε to get the function
between p, q, r and T	

–  Select m limited samples of (pl, ql, rl, Tl) (1≤l≤m) from the existing experiment results	

–  Solve m linear equations consisting of m selected samples to generate the concrete αijk and ε	

–  Utilize a successive convex approximation method (SCA) to find the optimal solution (i.e., the

minimum runtime T) of the above polynomial function and the optimal parameters (i.e., p, q
and r) when T is minimum

6/18/15

HPDC’15

21

Experimental Evaluation
•  Computer server

–  Intel Core i5 2.66 GHz, 16 GB RAM, 1 TB hard drive, Linux 64-bit

•  Graph parallel systems
–  GraphLab [Low et al., UAI'10]
–  GraphChi [Kyrola et al., OSDI'12]
–  X-Stream [Roy et al., SOSP'13]

•  Graph applications

6/18/15

HPDC’15

22

Execution Efficiency on Single Graph

6/18/15

HPDC’15

23

Execution Efficiency on Multiple Graphs

6/18/15

HPDC’15

24

Decision of #Partitions

6/18/15

HPDC’15

25

Efficiency of Regression-based Learning

GraphLego: Resource Aware GPS
•  Flexible multi-level hierarchical graph parallel

abstractions
–  Model a large graph as a 3D cube with source vertex, destination vertex

and edge weight as the dimensions
–  Partitioning a big graph by: slice, strip, dice based graph

partitioning

•  Access Locality Optimization
–  Dice-based data placement: store a large graph on disk by minimizing

non-sequential disk access and enabling more structured in-memory
access

–  Construct partition-to-chunk index and vertex-to-partition index to
facilitate fast access to slices, strips and dices

–  implement partition-level in-memory gzip compression to optimize disk I/
Os

•  Optimization for Partitioning Parameters
–  Build a regression-based learning model to discover the latent

relationship between the number of partitions and the runtime

6/18/15

HPDC’15

26

27

Questions

Open Source:
https://sites.google.com/site/git_GraphLego/

6/18/15

HPDC’15

