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Motivation – HPC Trends  
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 Huge performance gap 

 CPU: extremely fast  for generating  data 

 Disk, Network: very slow to store or transfer data 

 Memory: not  large  enough to hold data 
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In-Situ Analysis – What and Why 

• Process of transforming data at run time 

– Analysis 

– Classification 

– Reduction 

– Visualization 

• In-Situ has the promise of 

– Saving more information dense data 

– Saving I/O or network transfer time 

– Saving disk space 

– Saving time in analysis 
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Key Questions  

• How do we decide what data to save?   

– This analysis cannot take too much time/memory   

– Simulations already consume most  available 
memory  

– Scientists cannot accept  much slowdown for 
analytics 

•  How insights can be obtained in-situ? 

– Must be memory and time efficient  

• What representation to use for data stored in 
disks?    

– Effective analysis/visualization  

– Disk/Network Efficient  
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Quick Answers   

• How do we decide what data to save?    

– Use Bitmaps! 

• How insights can be obtained in-situ? 

– Use Bitmaps!!  

• What representation to use  for data stored  

on disks?    

– Bitmaps!!! 
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Specific Issues 

 

• Bitmaps as data summarization 
– Utilize extra computer power for data reduction 

– Save memory usage, disk I/O and network transfer time 

• In-Situ Data Reduction 

– In-Situ generate bitmaps 

 Bitmaps generation is time-consuming 

 Bitmaps before compression has big memory cost 

• In-Situ Data Analysis 

– Time steps selection 

 Can bitmaps support time step selection? 

 Efficiency of time step selection using bitmaps 

• Offline Analysis:  

– Only keep bitmaps instead of data 

– Types of analysis supported by bitmaps 
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Background: Bitmaps 

• Widely used in scientific data management 

 

 

 

 

 
 

• Suitable for floating value by binning small ranges 

• Run Length Compression (WAH, BBC) 

• Bitmaps can be treated as a small profile of the 

data 
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In-Situ Bitmaps Generation 

IO DevicesOffline Analysis

Data Bitmaps

Online Analysis
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In-Situ Bitmaps Generation 

• Parallel index generation 
– Save the data loading cost 

– Multi-Core based index generation 

• Core allocation strategies 
– Shared Cores 

Allocate all cores to simulation and bitmaps generation 

Executed in sequence 

– Separate Cores 

Allocate different core sets to simulation and bitmaps generation 

A data queue is shared between simulation and bitmaps 
generation 

Executed in parallel 

• In-place bitvector compression 

– Scan data by segments 

– Merge segment into compressed bitvectors 
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Time-Steps Selection 

Full Data

IO Devices

Correlation Metrics (Slow) Correlation Metrics (Slow)

IO (Slow) IO (Slow)

Bitmaps

IO Devices

Correlation Metrics (Fast) Correlation Metrics (Fast)

IO (Fast) IO (Fast)
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Correlation Metrics 

• Earth Mover’s Distance: 

– Indicate distance between two probability distributions over a region 

– Cost of changing value distributions of data  

• Shannon’s Entropy: 

– A metric to show the variability of the dataset 

– High  entropy => more random distributed data 

• Mutual Information: 

– A metric for computing the dependence between two variables 

– Low M => two variables are relatively independent 

• Conditional Entropy: 

– Self-contained information  

– Information with respect to others 
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Calculate Earth Mover’s Distance 

Using Bitmaps 

• Divide Ti and Tj into bins 

over value subsets 

• Generate a CFP based 

on value differences 

between bins of Ti and 

Tj 

• Accumulate results 
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Correlation Mining Using Bitmaps 

• Correlation mining  

– Automatically suggest data subsets with high correlations 

– Correlation Analysis: keep submitting queries 

– Traditional Method 

Exhaustive calculation over data subsets (spatial and value) 

Huge time and memory cost 

• Correlation mining using bitmap 

– Mutual Information 

Calculated by probability distribution (value subsets) 

– A top-down method for value subsets 

Multi-level bitmap indexing 

Go to low-level index only if high-level has high mutual info 

– A bottom-up method for spatial subsets 

  Divide bitvectors (with high correlations) into basic strides  

  Perform 1-bits count operation over strides 
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Correlation Mining 



HPDC 2015 

Experiment Results 
• Goals:  

– Efficiency and storage improvement using bitmaps 

– Scalability in parallel in-situ environment 

– Efficiency improvement for correlation mining 

– Efficiency and accuracy comparison with sampling 

• Simulations: Heat3D, Lulesh 

• Datasets: Parallel Ocean Program 

• Environment:  

– 32 Intel Xeon x5650 CPUs and 1TB memory 

– MIC: 60 Intel Xeon Phi coprocessors and 8GB memory 

– OSC Oakley Cluster:  32 nodes with 12 Intel Xeon x5650 

CPUs and 48 GB memory 
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Efficiency Comparison for In-Situ 

Analysis - CPU 

• Full Data (original):  

• Simulation: bad scalability 

• Time Step Selection: big 

• Data Writing: big and bad 

scalability 

• Bitmaps:  

• Simulation: utilize extra 

computing power for bitmaps 

generation 

• Extra bitmaps generation time 

but good scalability 

• Time Step Selection Using 

Bitmaps: 1.38x to 1.5x 

• Bitmaps Writing: 6.78x 

• Overall: 0.79x to 2.38x 

• More number of cores, better 

speedup we can achieve 

• Simulation: Heat3D; Processor: CPU 

• Time steps: select 25 over 100 time steps 

• 6.4 GB per time step (800*1000*1000) 

• Metrics: Conditional Entropy 
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Efficiency Comparison for In-Situ 

Analysis - MIC 

• MIC:  

• More cores 

• Lower bandwidth 

• Full Data (original):  

• Huge data writing time 

• Bitmaps:  

• Good scalability of both 

bitmaps generation and time 

step selection using bitmaps 

• Much smaller data writing time 

• Overall: 0.81x to 3.28x 

• Simulation: Heat3D; Processor: MIC 

• Time steps: select 25 over 100 time steps 

• 1.6 GB per time step (200*1000*1000) 

• Metrics: Conditional Entropy 
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Memory Cost of In-Situ Analysis 

• Simulation: Heat3D, Lulesh 

• Processor: CPU, MIC 

• Keep 10 time steps in memory 

• Heat3D - No Indexing: 

• 12 time steps (pre, temp, cur) 

• Heat3D - Bitmap Indexing:  

• 2 time steps (pre, temp) 

• 1 previous selected indices 

• 10 current indices 

• Lulesh – No Indexing:  

• 11 time steps (pre, cur) 

• Huge extra memory for edges 

• Lulesh – Bitmap Indexing:  

• 1 time step (pre) 

• 1 previous selected indices 

• 10 current indices 

• Huge extra memory for edges 

• 2.0x to 3.59x smaller memory 

• Better as bigger data simulated 

and more time steps to hold 
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Scalability in Parallel Environment 

• Select 25 time steps out of 100 

• TEMP Variable:  6.4 GB per time step 

• Number of nodes: 1 to 32 

• Number of cores: 8 

 

• Simulation: Heat3D  

• Full Data– Local: 

• Each node write its data 

subblock into its own disk 

• Bitmaps– Local: 

• Each node writes its bitmaps 

subblock into its own disk 

• Fast time step selection and 

local writing  

• 1.24x – 1.29x speedup 

• Full Data– Remote: 

• Different nodes send data 

sub-blocks to a master node 

• Bitmaps – Remote: 

• Greatly alleviate data transfer 

burden of master node 

• 1.24x – 3.79x speedup  
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Speedup for Correlation Mining 

• Variables:  TEMP, SALT 

• Data size per variable: 1.4 GB to 11.2 GB  

• Number of cores: 1 

 

• Simulation: POP 

• Full Data: 

• Big data loading cost 

• Exhaustive calculations over 

data subsets 

• Each calculation is time 

consuming 

• Bitmaps: 

• Smaller data loading 

• Multi-level bitmaps to improve 

the mining process 

• Bitwise AND and 1-bits count 

operations to improve the 

calculation efficiency 

• 3.81x – 4.92x speedup 
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In-Situ Sampling vs. Bitmaps 

• Heat3D ,100 time steps (6.4 GB), 32 cores  

• Bitmaps generation (binning, compression) 

has more time cost then down-sampling 

• Sampling can effectively improve the time 

step selection cost 

• Bitmaps generation can still achieve better 

efficiency if the index size is smaller than 

sample size 

• Bitmaps: using the same binning scale, 

does not have any information loss 

• Sampling: information loss is unavoidable 

no matter what sample% 

• 30% - 21.03% loss 

• 15% - 37.56% loss 

• 5% - 58.37% loss 
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Conclusion 

• ‘Big Data’ issue brings challenges for scientific 

data management 

• Efficient in-situ bitmaps generation 

• Efficient online data analysis (time step selection) 

using only bitmaps 

• Efficient offline data analysis (correlation mining) 

using only bitmaps 

• Compare in-situ data sampling with in-situ bitmaps 

 


