

In-Situ Bitmaps Generation and Efficient Data Analysis based on Bitmaps

Yu Su, Yi Wang, Gagan Agrawal The Ohio State University

HPDC 2015

Motivation – HPC Trends

- Huge performance gap
 - ✓ CPU: extremely fast for generating data
 - Disk, Network: very slow to store or transfer data
 - Memory: not large enough to hold data

In-Situ Analysis – What and Why

- Process of transforming data at run time
 - Analysis
 - Classification
 - Reduction
 - Visualization
- In-Situ has the promise of
 - Saving more information dense data
 - Saving I/O or network transfer time
 - Saving disk space
 - Saving time in analysis

Key Questions

- How do we decide what data to save?
 - This analysis cannot take too much time/memory
 - Simulations already consume most available memory
 - Scientists cannot accept much slowdown for analytics
- How insights can be obtained in-situ?
 - Must be memory and time efficient
- What representation to use for data stored in disks?
 - Effective analysis/visualization
 - Disk/Network Efficient

- How do we decide what data to save?
 Use Bitmaps!
- How insights can be obtained in-situ?
 Use Bitmaps!!
- What representation to use for data stored on disks?
 - Bitmaps!!!

Specific Issues

- Bitmaps as data summarization
 - Utilize extra computer power for data reduction
 - Save memory usage, disk I/O and network transfer time
- In-Situ Data Reduction
 - In-Situ generate bitmaps
 - Bitmaps generation is time-consuming
 - ✓ Bitmaps before compression has big memory cost
- In-Situ Data Analysis
 - Time steps selection
 - Can bitmaps support time step selection?
 - Efficiency of time step selection using bitmaps
- Offline Analysis:
 - Only keep bitmaps instead of data
 - Types of analysis supported by bitmaps

Background: Bitmaps

• Widely used in scientific data management

ID	Dimension		Value	v0	v1	v0	v1	v2	v3
	D0	D1		[1, 2]	[3, 4]	= 1	= 2	= 3	= 4
0	0	0	4	0	1	0	0	0	1
1	0	1	1	1	0	1	0	0	0
2	0	2	2	1	0	0	1	0	0
3	0	3	2	1	0	0	1	0	0
4	1	0	3	0	1	0	0	1	0
5	1	1	4	0	1	0	0	0	1
6	1	2	3	0	1	0	0	1	0
7	1	3	1	1	0	1	0	0	0
Dataset				1st Level Indices		2nd Level Indices			

- Suitable for floating value by binning small ranges
- Run Length Compression (WAH, BBC)
- Bitmaps can be treated as a small profile of the data

In-Situ Bitmaps Generation

Core Allocation Strategy

In-Situ Bitmaps Generation

- Parallel index generation
 - Save the data loading cost
 - Multi-Core based index generation
- Core allocation strategies
 - Shared Cores
 - ✓ Allocate all cores to simulation and bitmaps generation
 - ✓ Executed in sequence
 - Separate Cores
 - ✓ Allocate different core sets to simulation and bitmaps generation
 - A data queue is shared between simulation and bitmaps generation
 - ✓ Executed in parallel
- In-place bitvector compression
 - Scan data by segments
 - Merge segment into compressed bitvectors

Correlation Metrics

- Earth Mover's Distance:
 - Indicate distance between two probability distributions over a region
 - Cost of changing value distributions of data
- *Shannon*'s Entropy:
 - A metric to show the variability of the dataset
 - High entropy => more random distributed data
- Mutual Information:
 - A metric for computing the dependence between two variables
 - Low M => two variables are relatively independent
- Conditional Entropy:
 - Self-contained information
 - Information with respect to others

Calculate Earth Mover's Distance Using Bitmaps

- Divide T_i and T_j into bins over value subsets
- Generate a CFP based on value differences between bins of T_i and T_j
- Accumulate results

$$\begin{split} \text{EMD} &= \sum_{j=1}^{N} \text{CFP}(j), \\ \text{CFP}(j) &= \text{CFP}(j-1) + Diff(\text{Bin}(A_j), \text{Bin}(B_j)), \\ \text{CFP}(0) &= 0. \end{split}$$

Correlation Mining Using Bitmaps

- Correlation mining
 - Automatically suggest data subsets with high correlations
 - Correlation Analysis: keep submitting queries
 - Traditional Method
 - ✓ Exhaustive calculation over data subsets (spatial and value)
 - ✓ Huge time and memory cost
- Correlation mining using bitmap
 - Mutual Information
 - ✓ Calculated by probability distribution (value subsets)
 - A top-down method for value subsets
 - ✓ Multi-level bitmap indexing
 - \checkmark Go to low-level index only if high-level has high mutual info
 - A bottom-up method for spatial subsets
 - ✓ Divide bitvectors (with high correlations) into basic strides
 - ✓ Perform 1-bits count operation over strides

Correlation Mining

Experiment Results

- Goals:
 - Efficiency and storage improvement using bitmaps
 - Scalability in parallel in-situ environment
 - Efficiency improvement for correlation mining
 - Efficiency and accuracy comparison with sampling
- Simulations: Heat3D, Lulesh
- Datasets: Parallel Ocean Program
- Environment:
 - 32 Intel Xeon x5650 CPUs and 1TB memory
 - MIC: 60 Intel Xeon Phi coprocessors and 8GB memory
 - OSC Oakley Cluster: 32 nodes with 12 Intel Xeon x5650 CPUs and 48 GB memory

Efficiency Comparison for In-Situ Analysis - CPU

- Simulation: Heat3D; Processor: CPU
- Time steps: select 25 over 100 time steps
- 6.4 GB per time step (800*1000*1000)
- Metrics: Conditional Entropy

- Full Data (original):
 - Simulation: bad scalability
 - Time Step Selection: big
 - Data Writing: big and bad scalability
- Bitmaps:
 - Simulation: utilize extra computing power for bitmaps generation
 - Extra bitmaps generation time but good scalability
 - Time Step Selection Using Bitmaps: 1.38x to 1.5x
 - Bitmaps Writing: 6.78x
 - Overall: 0.79x to 2.38x
 - More number of cores, better speedup we can achieve

Efficiency Comparison for In-Situ Analysis - MIC

- Simulation: Heat3D; Processor: MIC
- Time steps: select 25 over 100 time steps
- 1.6 GB per time step (200*1000*1000)
- Metrics: Conditional Entropy

MIC:

- More cores
- Lower bandwidth
- Full Data (original):
 - Huge data writing time

Bitmaps:

- Good scalability of both bitmaps generation and time step selection using bitmaps
- Much smaller data writing time
- Overall: 0.81x to 3.28x

Memory Cost of In-Situ Analysis

HPDC 2015

Scalability in Parallel Environment

- Select 25 time steps out of 100
- TEMP Variable: 6.4 GB per time step
- Number of nodes: 1 to 32
- Number of cores: 8

- Simulation: Heat3D
 - Full Data– Local:
 - Each node write its data subblock into its own disk
- Bitmaps-Local:
 - Each node writes its bitmaps subblock into its own disk
 - Fast time step selection and local writing
 - 1.24x 1.29x speedup
- Full Data– Remote:
 - Different nodes send data sub-blocks to a master node
- Bitmaps Remote:
 - Greatly alleviate data transfer burden of master node
 - 1.24x 3.79x speedup

Speedup for Correlation Mining

In-Situ Sampling vs. Bitmaps

- Heat3D ,100 time steps (6.4 GB), 32 cores
- Bitmaps generation (binning, compression) has more time cost then down-sampling
- Sampling can effectively improve the time step selection cost
- Bitmaps generation can still achieve better efficiency if the index size is smaller than sample size

- Bitmaps: using the same binning scale, does not have any information loss
- Sampling: information loss is unavoidable no matter what sample%
- 30% 21.03% loss
- 15% 37.56% loss
- 5% 58.37% loss

Conclusion

- 'Big Data' issue brings challenges for scientific data management
- Efficient in-situ bitmaps generation
- Efficient online data analysis (time step selection) using only bitmaps
- Efficient offline data analysis (correlation mining) using only bitmaps
- Compare in-situ data sampling with in-situ bitmaps

