
XEMEM: Efficient Shared
Memory for Composed

Applications on Multi-OS/R
Exascale Systems

Brian Kocoloski

Jack Lange

Multi-Enclave Exascale Systems

• Recent efforts in exascale operating systems and runtimes (OS/R):

• Hobbes (SNL, LBNL, LANL, ORNL, U. Pitt, various universities)

• Argo (ANL, LLNL, PNNL, various universities)

• mOS (Intel), FusedOS (Intel / IBM)

• McKernel (RIKEN AICS, University of Tokyo)

• Common theme: no “one-size-fits-all” OS/R at exascale

• Significant heterogeneity in resources on exascale nodes

• Applications specialized for specific hardware and runtime environment

• Challenge: how can applications coordinate across multiple
OS/R instances?

• Communication required for composed workloads, system services

• This talk: XEMEM, efficient shared memory for a functional
multi-OS/R exascale environment

XEMEM: Cross Enclave Memory

• XEMEM supports shared memory between all processes
• LWK processes, Linux processes, VM processes

• Supports composed application workflows and system services

• Unmodified applications written for single OS/R supported
• API backwards compatible with Cray/SGI XPMEM API

• Requires no user level knowledge of enclave configuration

Enclave: Partition of node hardware and independent system
software environment (e.g., lightweight kernel (LWK), Linux,
virtual machine (VM))

Talk Roadmap

• Multi-OS/R Shared Memory

• XEMEM Implementation

• Evaluation

• Conclusion/Questions

4 Tenets of Multi-OS/R Shared
Memory
1. Maintain Simplicity of Single OS Programming

• Multi-OS/R programming should not be more difficult than single OS

2. Support Arbitrary Enclave Topologies
• System should not require a particular enclave configuration

• Processes should not need knowledge of topology

3. Be Resource Efficient, Provide Dynamic Mappings
• Construct memory mappings at the granularity requested by processes

4. Employ Localized Address Space Management
• Avoid error prone manipulation of remote enclave address spaces

Maintain Simplicity of Single OS
Programming
• Two key challenges: unique naming and discoverability

• These operations are simple in a single OS
• Unique naming: e.g., tuple <PID, virtual address>

• Discoverability: plethora of shared infrastructure (e.g., filesystems)

• However, lack of shared infrastructure and global address space
complicates multi-OS/R system
• Each enclave has a different PID space, filesystems, etc.

• Our approach: name server enclave
• Naming: allocate globally unique IDs for all shared memory regions

• Discoverability: allow enclaves to query existence of shared regions

XEMEM Shared Memory Protocol

• Protocol based on the Cray/SGI
XPMEM user-level API

• Allows sharing of arbitrary
virtual address ranges, no
explicit allocation of shared
memory

• Focus on xpmem_make and
xpmem_attach

• Processes not required to have knowledge of underlying
topology

• Q: How does an enclave know which destination enclave to send
to?
• By default, messages are sent to the name server, which is aware of

enclave topological locations

Function Operation

xpmem_make Export address region as shared
memory. Returns segid

xpmem_remove Remove an exported region
associated with a segid

xpmem_get Request access to shared memory
region associated with segid.
Returns permission grant

xpmem_release Release permission grant

xpmem_attach Map a region of shared memory
associated with a segid

xpmem_detach Unmap region of shared memory

XEMEM Shared Memory Protocol

Name Server

Enclave B Enclave CEnclave A

1
Export Region

2
Allocate Segid X

3
Attach Segid X

4
Get PFN List

5
Return PFN List

6
Return PFN List

Route
Commands

Segid X

Local
Virtual

Address

PFN Y

Local
Virtual

Address

PFN Y

Invokes xpmem_make Invokes xpmem_attach

Enclave Topology

Hardware + system software partitioning

• Enclave Topology: architectural partitioning and inter-enclave
communication interfaces

• Assumption: no guarantee of point to point communication
interfaces

Enclave Topology

Arbitrary Enclave Topologies

• Topologies for different architectures may be significantly
different
• Virtualization capabilities may or may not be present

• Application workloads may be different on different nodes and require
different types of enclaves

• Node workload characteristics will be dynamic and may change according
to application requirements

• At the same time, user-level should not be required to
understand this topology

• Our approach: support arbitrary communication by routing
messages hierarchically according to enclave topology

XEMEM Implementation

• Kitten Lightweight Kernel (LWK)
• New feature: Dynamic heap expansion

• New feature: Integration with SMARTMAP

• Palacios Virtual Machine Monitor (VMM)
• New feature: Host-to-guest memory sharing

• New feature: Guest-to-host memory sharing

• Pisces Co-kernel framework
• New feature: Cross-enclave page frame shipping

OS/R Fundamentals: Kitten

• Lightweight kernel (LWK) from Sandia National Laboratories
designed to execute massively parallel HPC applications

• Major design goal: provide more repeatable performance than
general purpose OS (like Linux) for complex workloads

• XEMEM challenges
• Kitten pre-maps all VA space to physical memory at process creation

• Kitten uses SMARTMAP for local enclave shared memory

• XEMEM features

https://software.sandia.gov/trac/kitten

• Dynamic heap expansion

• Integration with
SMARTMAP

https://software.sandia.gov/trac/kitten

OS/R Fundamentals: Palacios

• OS-independent, embeddable virtual machine monitor (VMM)

• Like Kitten, designed to execute massively parallel HPC
applications

• Lightweight resource management policies

• Established history of providing virtualized environments for HPC
• Palacios + Kitten: Near native performance at 4096 nodes of a Cray XT3

[Lange et al., VEE ‘11]

• Palacios + Linux: Better than native performance with Kitten as guest
[Kocoloski and Lange, ROSS ‘12]

http://www.prognosticlab.org/palacios
http://v3vee.org

http://www.prognosticlab.org/palacios
http://v3vee.org/

Palacios Host-to-Guest XEMEM
Implementation

Host PA Space

VMM Memory Map
(RB Tree)

Guest PA Space New Guest Pages

Host Enclave Pages

RB Entry
(GPA to HPA)

5: Copy New Guest
Pages from Device

PFN List

1: Allocate New Guest Pages
2: Map New Guest Pages to Host Enclave Pages

3: Copy New Guest Pages
to Device
4: Raise Virtual IRQ

PCI
Device

New Guest Pages

1
2

3

4

5

Palacios Guest-to-Host XEMEM
Implementation

Host PA Space

VMM Memory Map
(RB Tree)

Guest PA Space

Host Enclave
Pages

RB Entry
(GPA to HPA)

1: Copy Guest
Pages to Device
2: Issue Hypercall

PFN List

4: Walk Memory Map for each page in Guest
Pages to generate Host Enclave Pages

3: Copy Guest Pages
from Device PFN List

PCI
Device

Guest Pages

1

2

3

4

OS/R Fundamentals: Pisces

• Upcoming HPDC talk (tomorrow 2PM): Jiannan Ouyang:
Achieving Performance Isolation with Lightweight Co-Kernels

• Lightweight “co-kernel” architecture
• Decomposes node’s hardware into partitions managed by independent

system software environments (“co-kernels”)

• Primary design goal: provide strong performance isolation between
enclaves

• XEMEM feature: cross-enclave shipping of page frame lists via
inter-processor interrupts (IPIs)

http://www.prognosticlab.org/pisces

http://www.prognosticlab.org/pisces

Evaluation

• 2 Part Evaluation
• Analysis of shared memory performance and XEMEM overheads

• Analysis of a sample in situ workload

• Synthetic benchmarks
• Measure “time to availability” (TTA): time from attachment request to

attachment completion

• Sample In situ workload
• Measure runtime in an application composed in 2 separate enclaves

• Demonstrate benefits of performance isolation that multi-enclave systems
provide

Shared Memory Performance

• Kitten enclave exports memory region
• Process in Linux enclave attaches

• 4x improvement compared to
RDMA over SR/IOV

• 1,2,4,8 Kitten enclaves, 1,2,4,8
attaching processes in Linux

• Good scalability as memory size
increases

4x improvement

In Situ Workload Evaluation

• Sample in situ workload
• HPCCG from Mantevo (simulation)

• STREAM (analytics)

• Components communicate via “signals” (polling on variables in shared
memory)

• HPCCG performs iterative conjugate gradient solver
• Configured to share 512MB with STREAM after certain periodic iterations

• Send “signals” to begin STREAM execution

• Synchronous vs asynchronous execution
• Synchronous: single program executes at a time

• Asynchronous: programs execute simultaneously

In Situ Workload: Single Node

• Best performance: HPCCG in Kitten co-kernel, STREAM in Linux
• Synchronous: shared memory overhead in critical path

In Situ Workload: Single Node

• Best performance: HPCCG in Kitten co-kernel, STREAM in Linux
• Synchronous: shared memory overhead in critical path
• Single OS/R lacks performance isolation (e.g,., demand page faulting)

In Situ Workload: Multiple Nodes

• Multi Enclave: STREAM in native Linux, HPCCG in VM hosted by Kitten co-kernel

• Single node performance isolation leads to better scaling behavior

Virtualization: Better than Native
due to Performance Isolation

Single Persistent Attachment Multiple Attachments

• Multi Enclave: STREAM in native Linux, HPCCG in VM hosted by Kitten co-kernel

• Performance isolation leads to better than native performance

Conclusion

• Multi-enclave approaches to exascale OS/Rs are gaining traction

• Composed applications and system services will require the
ability to communicate across enclave boundaries

• XEMEM: efficient shared memory for multi-OS/R systems
• Maintains simplicity of single OS programming

• Supports arbitrary enclave topologies

• XEMEM implemented in a functional exascale multi-OS/R
prototype
• Benefits of performance isolation lead to more consistent performance

compared to single OS

• Multi-OS/R approach can lead to better than native performance

Thank You

• Pisces Co-kernel Talk Tomorrow (2PM):
• Jiannan Ouyang: Achieving Performance Isolation with Lightweight Co-

kernels

• Brian Kocoloski
• briankoco@cs.pitt.edu

• http://people.cs.pitt.edu/~briankoco

• Pointers to source
• The Prognostic Lab @ U. Pittsburgh

• http://www.prognosticlab.org

http://people.cs.pitt.edu/~briankoco
http://www.prognosticlab.org/

