UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

A Multiplatform Study of I/O Behavior on Petascale Supercomputers

MAND ATTERCORDER CONTRACTOR CONTRACTOR AND AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR

Huong Luu^{*}, Marianne Winslett^{*}, William Gropp^{*}, Robert Ross⁺, Philip Carns⁺, Kevin Harms⁺, Prabhat[^], Suren Byna[^], Yushu Yao[^]

* University of Illinois at Urbana - Champaign

- + Argonne National Laboratory
- ^: Lawrence Berkeley National Laboratory

As apps read/write more & more data, I/O becomes more important for performance.

We study the I/O behavior of thousands of applications on 3 large-scale supercomputers.

- Application-specific, platform-wide, cross-platform analysis.
- Portrait of state of HPC I/O usage.
- Application I/O analysis + visualization procedure.
- Help improve system utilization.

We analyze I/O logs captured by Darshan, a lightweight I/O characterization tool.

- Instruments I/O functions at multiple levels
- Reports key I/O characteristics
- Does not capture text I/O functions
- Low overhead → Automatically deployed on multiple platforms.

We break down I/O time into 4 categories.

I/O time: largest I/O time among all its processes

Total bytes

Aggregate I/O throughput =

I/O time

	Global file	Non-global file
Metadata (Open, close, seek,)		
Data transfer (read, write)		

I/O log dataset: 3 platforms, >1M jobs, >6 years combined.

	Intrepid	Mira	Edison
Architecture	BG/P	BG/Q	Cray XC30
Peak Flops	0.557 PF	10 PF	2.57 PF
Cores	160K	768K	130K
Total Storage	6 PB	24 PB	7.56 PB
Peak I/O Throughput	88 GB/s	240 GB/s	168 GB/s
File System	GPFS	GPFS	Lustre
# of jobs	239K	137K	703K
Time period	4 years	18 months	9 months

I/O log dataset: 3 platforms, >1M jobs, >6 years combined.

Observations from

PLATFORM-WIDE ANALYSIS

Very low I/O throughput is the norm.

Most jobs transfer little data. Many bigdata jobs also have very low thruput.

I/O time usage is dominated by a small number of jobs/apps.

Improving the performance of the top 15 apps can save a lot of I/O time.

	Platform I/O time percent	Percent of platform I/O time saved if min thruput = 1 GB/s
Mira	83%	32%
Intrepid	73%	31%
Edison	70%	60%

Early intervention by platform admins can help.

POSIX I/O is far more widely used than parallel I/O libraries.

1M

POSIX-only:

- Edison: 95%
- Intrepid: 80%
- Mira: 50%

No major I/O paradigm is always good or bad.

Minor I/O paradigms that will not scale: Text I/O, Serial I/O

E.g.: File-per-proc can work well if a job has enough data, even with >1M files.

APPLICATION-SPECIFIC ANALYSIS

Help application's users find I/O bottlenecks

with simple analysis and visualization procedure.

Earth1 – Mira's #1 I/O Consumer

1. Identify where the app spends most of its I/O time:

Earth1 – Mira's #1 I/O Consumer

2. Identify which files or file type consume most time.

3. Examine per-file performance info

Each process writes in small pieces (< 256 KB) that do not align with file system block boundaries.

Application-specific analysis

- Very simple and user-friendly.
- Quickly identify the I/O bottleneck/inefficiencies.
- User can follow up with a tracing/debugging tool.
- We are working with platform admins to make it available to all users.

CROSS-PLATFORM ANALYSIS

Platform 2

illinois.edu

Platform 1

Earth1: Intrepid #4 \rightarrow Mira #1.

Earth1's POSIX global shared files' metadata time didn't scale well.

Contributions

- Study I/O behavior of thousands of apps, >1M I/O logs, 6 years in combine, on 3 supercomputers.
- Application-specific, platform-wide, cross-platform analysis.
- Portrait of state of HPC I/O usage.
- Application I/O analysis + visualization procedure.
- Help improve system utilization.

